98%
921
2 minutes
20
Brain inspired artificial synapses are highly desirable for neuromorphic computing and are an alternative to a conventional computing system. Here, we report a simple and cost-effective ferroelectric capacitively coupled zinc-tin oxide (ZTO) thin-film transistor (TFT) topped with ferroelectric copolymer poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) for artificial synaptic devices. Ferroelectric dipoles enhance the charge trapping/detrapping effect in ZTO TFT, as confirmed by the transfer curve (-) analysis. This substantiates superior artificial synapse responses in ferroelectric-coupled ZTO TFT because the current potentiation and depression are individually improved. The ferroelectric-coupled ZTO TFT successfully emulates the essential features of the artificial synapse, including pair-pulsed facilitation (PPF) and potentiation/depression (P/D) characteristics. In addition, the device also mimics the memory consolidation behavior through intensified stimulation. This work demonstrates that the ferroelectric-coupled ZTO synaptic transistor possesses great potential as a hardware candidate for neuromorphic computing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c03066 | DOI Listing |
Micromachines (Basel)
July 2025
Department of Semiconductor Engineering, Hoseo University, Asan 31499, Republic of Korea.
Indium-based oxide semiconductors have been commercialized because of their excellent electrical properties, but the high cost, limited availability, and environmental toxicity of indium necessitate the development of alternative materials. Among the most promising candidates, zinc-tin oxide (ZTO) is an indium-free oxide semiconductor with considerable potential, but its relatively low carrier mobility and inherent limitations in thin-film quality demand further performance enhancements. This paper proposes a new approach to overcome these challenges by incorporating single-walled carbon nanotubes (SWNTs) as conductive fillers into the ZTO matrix and using a layer-by-layer multiple coating process to construct nanocomposite thin films.
View Article and Find Full Text PDFMicromachines (Basel)
June 2025
Key Laboratory of Architectural Cold Climate Energy Management, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China.
In this study, zinc-tin oxide (ZTO) thin films were prepared via radio-frequency magnetron sputtering to examine the influence of annealing temperature on the performance of thin-film transistors (TFTs) and their resistive-load inverters. The findings reveal that annealing modulates the concentration and spatial distribution of oxygen vacancies (V), which directly affect carrier density and interface trap density, ultimately determining the electrical behavior of inverters. At the optimal annealing temperature of 600 °C, the V concentration was effectively moderated, resulting in a TFT with a mobility of 12.
View Article and Find Full Text PDFMicromachines (Basel)
March 2025
Department of Semiconductor Engineering, Hoseo University, Asan 31499, Republic of Korea.
Solution-processed oxide thin-film transistors (TFTs) can lead to a significant cost-effective process and suitable for large-scale fabrication. However, they often face limitations, such as lower field-effect mobility, the use of indium which is toxic and rare, and degradation compared to vacuum-based technologies. The single-walled carbon nanotubes (SWNTs) were incorporated with zinc-tin oxide (ZTO) precursor solution without dispersants for the device's active layer.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Semiconductor Engineering, Hoseo University, Asan 31499, Republic of Korea.
A stacked nanocomposite zinc-tin oxide/single-walled carbon nanotubes (ZTO/SWNTs) active layer was fabricated for thin-film transistors (TFTs) as an alternative to the conventional single-layer structure of mixed ZTO and SWNTs. The stacked nanocomposite of the solution-processed TFTs was prepared using UV/O treatment and multiple annealing steps for each layer. The electrical properties of the stacked device were superior to those of the single-layer TFT.
View Article and Find Full Text PDFDiscov Nano
November 2024
School of Electronic and Electrical Engineering, Hongik University, Seoul, 04066, Republic of Korea.