Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Strain-engineering in 2D transition metal dichalcogenide (TMD) semiconductors has garnered intense research interest in tailoring the optical properties via strain-induced modifications of the electronic bands in TMDs, while its impact on the exciton dynamics remains less understood. To address this, an extensive study of transient optical absorption (TA) of both W- and Mo-based single-crystalline monolayer TMDs grown by a recently developed laser-assisted evaporation method is performed. All spectral features of the monolayers as grown on fused silica substrates exhibit appreciable redshifts relating to the existence of strain due to growth conditions. Moreover, these systems exhibit a dramatic slowing down of exciton dynamics (100s of picoseconds to few nanoseconds) with an increase in carrier densities, which strongly contrasts with the monolayers in their freestanding form as well as in comparison with more traditionally grown TMDs. The observations are related to the modifications of the electronic bands as expected from the strain and associated population of the intervalley dark excitons that can now interplay with intravalley excitations. These findings are consistent across both the Mo- and W-based TMD families, providing key information about the influence of the growth conditions on the nature of optical excitations and fostering emerging optoelectronic applications of monolayer TMDs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202110568DOI Listing

Publication Analysis

Top Keywords

transition metal
8
modifications electronic
8
electronic bands
8
exciton dynamics
8
monolayer tmds
8
growth conditions
8
photoexcitation dynamics
4
dynamics long-lived
4
long-lived excitons
4
excitons strain-engineered
4

Similar Publications

A screening of organic dyes has led to the discovery of gallocyanine as an organocatalyst for the halogenation of a variety of functionalized pyrazoles, indazoles, and aromatics. This work provides an example of a mild organocatalyst that does not require light, oxidizing agents, transition-metal activation, or high temperatures. Thirty-nine halogenated pyrazoles and indazoles, including pharmaceuticals such as celecoxib, deracoxib, and antipyrine, have been isolated in good to excellent yields using -halosuccinimides as the stoichiometric halogen source with gallocyanine as the catalyst.

View Article and Find Full Text PDF

This study aimed to histomorphometrically evaluate the effect of guided bone regeneration (GBR) and two implant surfaces on the thickness and height of newly formed bone in dehiscence defects around titanium implants. Three premolars and the first bilateral molar were extracted from ten adult mongrel dogs, and 40 buccal bone dehiscences measuring 5 mm in height and 4 mm in width were created using a University of North Carolina (UNC) periodontal probe to confirm the dimensions. Forty implants were randomly assigned to one of four groups: oxidized implant surfaces (OIS, n = 10), turned/machined implant surfaces (TIS, n = 10), OIS + GBR (n = 10), and TIS + GBR (n = 10).

View Article and Find Full Text PDF

Lifetimes of the Metastable 6d ^{2}D_{5/2} and 6d ^{2}D_{3/2} State of Ra^{+}.

Phys Rev Lett

August 2025

the University of Maryland, National Institute of Standards and Technology, University of Delaware, Department of Physics and Astronomy, Newark, Delaware 19716, USA and Joint Quantum Institute, College Park, Maryland 20742, USA.

We report lifetime measurements of the metastable 6d ^{2}D_{5/2} and 6d ^{2}D_{3/2} states of Ra^{+}. The measured lifetimes, τ_{5}=303.8(1.

View Article and Find Full Text PDF

Dimensionality-Driven Anomalous Metallic State with Zero-Field Nonreciprocal Transport in Layered Ising Superconductors.

Phys Rev Lett

August 2025

Nanjing University, National Laboratory of Solid State Microstructures, Institute of Brain-Inspired Intelligence, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China.

The anomalous metal state (AMS), observed in "failed" superconductors, provides insights into superconductivity and quantum criticality, with studies revealing unconventional quantum phases like the Bose metal. Recently, layered transition metal dichalcogenide (TMD) superconductors approaching the two-dimensional limit have garnered significant attention for the enhanced phase fluctuations and electronic correlations. Investigating AMSs in these systems, particularly in the absence of an external magnetic field, could offer valuable insights into the dimensionality-driven emergence of exotic quantum phenomena, including triplet Cooper pairing, phase fluctuation dynamics, and especially the recently discovered field-free superconducting diode effects.

View Article and Find Full Text PDF

This article presents a multiproxy investigation of metal samples obtained from 48 Nuragic figurines (so-called bronzetti) and three copper bun ingots. These objects originate from three prominent Sardinian sanctuaries and one unidentified site, dating to the late Nuragic period of the early first millennium BCE. The dataset significantly expands the existing scientific database and unwraps the complex fabrication biographies of the figurines from ore to finished object.

View Article and Find Full Text PDF