Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Reaction-based design is the computational generation of novel molecular structures by linking building blocks using reaction vectors derived from chemistry knowledge. In this work, we first adopted a recurrent neural network (RNN) model to generate three groups of building blocks with different functional groups and then constructed an in silico target-focused combinatorial library based on chemical reaction rules. Mer tyrosine kinase (MERTK) was used as a study case. Combined with a scaffold enrichment analysis, 15 novel MERTK inhibitors covering four scaffolds were achieved. Among them, obtained an IC value of 53.4 nM against MERTK without any further optimization. The efficiency of hit identification could be significantly improved by shrinking the compound library with the fragment iterative optimization strategy and enriching the dominant scaffold in the hinge region. We hope that this strategy can provide new insights for accelerating the drug discovery process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.2c00068 | DOI Listing |