98%
921
2 minutes
20
Liquid-infused surfaces offer a versatile approach to create self-cleaning coatings. In such coatings, a thin film of a fluid lubricant homogeneously coats the substrate and thus prevents direct contact with a second, contaminating liquid. For stable repellency, the interfacial energies need to be controlled to ensure that the lubricant is not replaced by the contaminating liquid. Here, we introduce the concept of self-functionalizing lubricants. Functional molecular species that chemically match the lubricant but possess selective anchor groups are dissolved in the lubricant and self-adhere to the surface, forming the required surface chemistry from within the applied lubricant layer. To add flexibility to the self-functionalizing concept, the substrate is first primed with a thin polydopamine base layer, which can be deposited to nearly any substrate material from aqueous solutions and retains reactivity toward electron-donating groups such as amines. The temporal progression of the functionalization is investigated by ellipsometry and quartz crystal microbalance and correlated to macroscopic changes in contact angle and contact angle hysteresis. The flexibility of the approach is underlined by creating repellent coatings with various substrate/lubricant combinations. The prepared liquid-infused surfaces significantly reduce cement adhesion and provide easy-to-clean systems under real-world conditions on shoe soles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c02390 | DOI Listing |
Sci Adv
September 2025
School of Electrical and Electronic Engineering, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
Brain-computer interfaces (BCIs) enable direct communication between the brain and computers. However, their long-term functionality remains limited due to signal degradation caused by acute insertion trauma, chronic foreign body reaction (FBR), and biofouling at the device-tissue interface. To address these challenges, we introduce a multifunctional surface modification strategy called targeting-specific interaction and blocking nonspecific adhesion (TAB) coating for flexible fiber, achieving a synergistic integration of mechanical compliance and biochemical stability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States.
Slippery liquid-infused porous surfaces (or "SLIPS") can prevent bacterial surface fouling, but they do not inherently possess the means to kill bacteria or reduce cell loads in surrounding media. Past reports show that the infused liquids in these materials can be leveraged to load and release antimicrobial agents, but these approaches are generally limited to the use of hydrophobic agents that are soluble in the infused oily phases. Here, we report the design of so-called "proto-SLIPS" that address this limitation and permit the release of highly water-soluble (or oil-insoluble) agents.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Material Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang, Beijing 100029, China.
The construction of perfluoropolyether (PFPE) slippery liquid-infused porous surfaces (SLIPS) on gold coatings is one of the most effective strategies for bestowing anticoagulation and antimicrobial properties on the material. However, the poor chemical affinity between fluorinated porous precursors and gold substrates causes the agglomeration of nanostructures, resulting in uneven nanoporous morphology and accelerating lubricant leakage. Simultaneously, the weak interfacial adhesion between the nanostructures and the substrate may lead to the detachment of nanostructures under blood circulation.
View Article and Find Full Text PDFCell Biol Int
July 2025
Department of Biophysics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Traditional treatment of biofouling with toxic paints or antibiotics has significant limitations and challenges, including negative impacts on surrounding ecosystems and the emergence of resistant microbial strains. Antibiotics often prove ineffective in penetrating the dense and protective structure of biofilms, rendering traditional antimicrobial approaches less effective and leading to chronic infections. Toxic paints, while initially effective in reducing microbial colonization, contribute to long-term environmental contamination and harm non-target organisms.
View Article and Find Full Text PDFAdv Healthc Mater
August 2025
School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
Implant-associated infections remain a significant complication in medicine. often leading to chronic infection, tissue damage, or implant failure. To address this, this work develops a modular, triple-action titanium implant that integrates bacterial repellency, bactericidal activity, and enhanced tissue integration.
View Article and Find Full Text PDF