98%
921
2 minutes
20
The process of epigenetic silencing, while fundamentally important, is not yet completely understood. Here we report a replenishable female mouse embryonic stem cell (mESC) system, Xmas, that allows rapid assessment of X chromosome inactivation (XCI), the epigenetic silencing mechanism of one of the two X chromosomes that enables dosage compensation in female mammals. Through a targeted genetic screen in differentiating Xmas mESCs, we reveal that the BAF complex is required to create nucleosome-depleted regions at promoters on the inactive X chromosome during the earliest stages of establishment of XCI. Without this action gene silencing fails. Xmas mESCs provide a tractable model for screen-based approaches that enable the discovery of unknown facets of the female-specific process of XCI and epigenetic silencing more broadly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964718 | PMC |
http://dx.doi.org/10.1038/s41467-022-29333-1 | DOI Listing |
Front Immunol
September 2025
Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
Gliomas are the most common primary malignant tumors of the central nervous system (CNS), and despite progress in molecular diagnostics and targeted therapies, their prognosis remains poor. In recent years, immunotherapy has emerged as a promising treatment modality in cancer therapy. However, the inevitable immune evasion by tumor cells is a key barrier affecting therapeutic efficacy.
View Article and Find Full Text PDFNat Struct Mol Biol
September 2025
Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK.
X-chromosome inactivation (XCI) in mammals is orchestrated by the noncoding RNA X-inactive-specific transcript (Xist) that, together with specific interacting proteins, functions in cis to silence an entire X chromosome. Defined sites on Xist RNA carry the N-methyladenosine (mA) modification and perturbation of the mA writer complex has been found to abrogate Xist-mediated gene silencing. However, the relative contribution of mA and its mechanism of action remain unclear.
View Article and Find Full Text PDFInt J Pharm
September 2025
CINBIO, Immunology Group, Universidade de Vigo 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC) remains a highly aggressive malignancy with poor therapeutic outcomes due to its desmoplastic tumor microenvironment (TME), hindering drug and activated immune cell penetration. Cancer-associated fibroblasts (CAFs) are central in supporting tumor growth and forming a protective stroma. We propose a novel dual-therapy targeting the Hippo pathway and histone deacetylation, both involved in tumor progression, resistance, and stromal interactions, to overcome PDAC therapeutic resistance.
View Article and Find Full Text PDFCancer Lett
September 2025
State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, Department of Radiology, Department of Clinical Research and Translational Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou,
The tumor microenvironment (TME) plays a pivotal role in cancer progression, though the molecular regulators governing its immunosuppressive properties remain incompletely characterized. In this study, we identify Makorin-2 (MKRN2) as a novel modulator of TME remodeling through integrated analyses of genetically engineered mouse models and human clinical data. Utilizing MKRN2 knockout mice, we observed significantly accelerated tumor growth compared to wild-type control, which was associated with profound alterations in immune cell composition, especially M2 macrophages.
View Article and Find Full Text PDFBiochem Pharmacol
September 2025
Department of Biosciences, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal 700109, India. Electronic address:
The malignant manifestation of breast cancer is driven by complex molecular alterations that extend beyond genetic mutations to include epigenetic dysregulation. Among these, DNA methylation is a critical and reversible epigenetic modification that significantly influences breast cancer initiation, progression, and therapeutic resistance. This process, mediated by DNA methyltransferases (DNMTs), involves the addition of methyl groups to cytosine residues within CpG dinucleotides, resulting in transcriptional repression of genes.
View Article and Find Full Text PDF