98%
921
2 minutes
20
In recent decades, psychiatry and the neurosciences have made little progress in terms of preventing, diagnosing, classifying, or treating mental disorders. Here we argue that the dilemma of psychiatry and the neurosciences is, in part, based on fundamental misconceptions about the human mind, including misdirected nature-nurture debates, the lack of definitional concepts of "normalcy," distinguishing defense from defect, disregarding life history theory, evolutionarily uninformed genetic and epigenetic research, the "disconnection" of the brain from the rest of the body, and lack of attention to actual behavior in real-world interactions. All these conceptual difficulties could potentially benefit from an approach that uses evolutionary theory to improve the understanding of causal mechanisms, gene-environment interaction, individual differences in behavioral ecology, interaction between the gut (and other organs) and the brain, as well as cross-cultural and across-species comparison. To foster this development would require reform of the curricula of medical schools.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/NMD.0000000000001493 | DOI Listing |
Dermatol Reports
September 2025
Clinical Dermatology Unit, San Gallicano Dermatological Institute IRCCS, Rome.
Psoriasis is a dermatological disorder whose clinical manifestations have attracted the interest of physicians since ancient times. Hippocrates of Cos in the 5th century B.C.
View Article and Find Full Text PDFNat Ecol Evol
September 2025
Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.
All plants and animals are host to a community of microorganisms, their microbiotas, which have crucial influences on the life history and performance of their hosts. Despite the importance of such host-microbiota relationships, relatively little is known about the role microbiotas have in mediating evolution of the host and entire host-microbe assemblages. This knowledge gap is partly due to the lack of theoretical frameworks that generate testable predictions on the evolutionary dynamics of host-microbiota systems.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520.
A frequent goal of phage biology is to quantify how well a phage kills a population of host bacteria. Unfortunately, traditional methods to quantify phage success can be time-consuming, limiting the throughput of experiments. Here, we use theory to show how the effects of phages on their hosts can be quantified using bacterial population dynamics measured in a high-throughput microplate reader (automated spectrophotometer).
View Article and Find Full Text PDFPLoS Comput Biol
September 2025
Department of Human Behaviour, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
A major goal of behavioural ecology is to explain how phenotypic and ecological factors shape the networks of social relationships that animals form with one another. This inferential task is notoriously challenging. The social networks of interest are generally not observed, but must be approximated from behavioural samples.
View Article and Find Full Text PDFPLoS One
September 2025
Information Technologies and Programming Faculty, ITMO University, Saint Petersburg, Russia.
In the paper we consider the well-known Influence Maximization (IM) and Target Set Selection (TSS) problems for Boolean networks under Deterministic Linear Threshold Model (DLTM). The main novelty of our paper is that we state these problems in the context of pseudo-Boolean optimization and solve them using evolutionary algorithms in combination with the known greedy heuristic. We also propose a new variant of (1 + 1)-Evolutionary Algorithm, which is designed to optimize a fitness function on the subset of the Boolean hypercube comprised of vectors of a fixed Hamming weight.
View Article and Find Full Text PDF