98%
921
2 minutes
20
Double network hydrogels (DN gels) composed of poly (2-acrylamido-2-methyl propanesulfonic acid) (PAMPS) as the brittle first network and poly (,-dimethylacrylamide) (PDMA) as the ductile second network have been proven to be a substitute biomaterial for cartilage, with promising biocompatibility and low toxicity, when they are used as bulk materials. For their further applications as articular cartilages, it is essential to understand the biological reactions and adverse events that might be initiated by wear particles derived from these materials. In this study, we used DN gel micro-particles of sizes 4 μm and 10 μm generated by the grinding method to mimic wearing debris of DN gels. The biological responses to particles were then evaluated in a macrophage-cultured system and an inflammatory osteolysis murine model. Our results demonstrated that DN gel particles have the ability to activate macrophages and promote the expression of Tnf-α, both and . Furthermore, the implantation of these particles onto calvarial bone triggered local inflammation and bone loss in a mouse model. Our data reveal that the potential foreign body responses to the generated particles from artificial cartilage should receive more attention in artificial cartilage engineering with the goal of developing a safer biocompatible substitute.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1bm01777b | DOI Listing |
Genome Biol
September 2025
Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.
View Article and Find Full Text PDFNutr J
September 2025
Department of Life Sciences, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, 412 96, Sweden.
Background: Avenanthramides (AVAs) and Avenacosides (AVEs) are unique to oats (Avena Sativa) and may serve as biomarkers of oat intake. However, information regarding their validity as food intake biomarkers is missing. We aimed to investigate critical validation parameters such as half-lives, dose-response, matrix effects, relative bioavailability under single dose, and in relation to the abundance of Feacalibacterium prausnitzii, and under repeated dosing, to understand the potential applications of AVAs and AVEs as biomarkers of oat intake.
View Article and Find Full Text PDFBMC Pulm Med
September 2025
Division of Cellular Pneumology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, 23845, Germany.
Background: Volatile anesthetics are gaining recognition for their benefits in long-term sedation of mechanically ventilated patients with bacterial pneumonia and acute respiratory distress syndrome. In addition to their sedative role, they also exhibit anti-bacterial and anti-inflammatory properties, though the mechanisms behind these effects remain only partially understood. In vitro studies examining the prolonged impact of volatile anesthetics on bacterial growth, inflammatory cytokine response, and surfactant proteins - key to maintaining lung homeostasis - are still lacking.
View Article and Find Full Text PDFGenome Biol
September 2025
Department of Biology, Plant-Microbe Interactions, Science for Life, Utrecht University, Utrecht, 3584CH, The Netherlands.
Background: Plant roots release root exudates to attract microbes that form root communities, which in turn promote plant health and growth. Root community assembly arises from millions of interactions between microbes and the plant, leading to robust and stable microbial networks. To manage the complexity of natural root microbiomes for research purposes, scientists have developed reductionist approaches using synthetic microbial inocula (SynComs).
View Article and Find Full Text PDFBMC Plant Biol
September 2025
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia.
Drought stress affects plant growth and production. To cope with drought stress, plants induced physiological and metabolic changes, serving as a protective approach under drought-stress conditions. The response to drought can vary based on plant type (C3 vs.
View Article and Find Full Text PDF