98%
921
2 minutes
20
Background: While searching for novel small molecules for new organic pesticide agents against plant-parasitic nematodes, we found that the hexane extract from the roots of Senecio sinuatos and its main secondary metabolite, 3β-angeloyloxy-6β-hydroxyfuranoeremophil-1(10)-ene (1), possess nematicidal activity against the second stage juvenile (J2) of Meloidogyne incognita and Nacobbus aberrans. Both species reduce yield of various vegetable crops. These results encouraged us to synthesize esters 3-9 formed by diol 2, obtained by alkaline hydrolysis of 1 and acetic anhydride, benzoic acid, 2-nitrobenzoic acid, 2-bromobenzoic acid, 4-nitrobenzoic acid, 4-bromobenzoic acid, and 4-methoxybenzoic acid, respectively. The nematicidal activity of these esters was evaluated and compared with that of the free benzoic acids.
Results: Natural product 1 and derivatives 2-9 were obtained and characterized by their physical and spectroscopic properties, including one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) experiments; X-ray diffraction analysis established their absolute configuration. The nematicidal activity of compounds 1-9 was assessed in vitro against M. incognita and N. aberrans J2 and was compared to activity shown by benzoic acid, 2-nitrobenzoic acid, 2-bromobenzoic acid, 4-nitrobenzoic acid, 4-bromobenzoic acid, and 4-methoxybenzoic acid. The esters suppressed nematodes more than free benzoic acid. Nacobbus aberrans J2 were suppressed, with compounds 5, 6, and 8 being the most active.
Conclusion: Esters formed by 3β,6β-dihydroxyfuranoeremophil-1(10)-ene and ortho- or para-substituted benzoic acids containing electron acceptor groups had nematicidal activity against N. aberrans. These compound can potentially serve as a model for the development of new organic nematicidal agents. © 2022 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ps.6888 | DOI Listing |
J Agric Food Chem
September 2025
State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
Indole, as a unique natural scaffold structure, has attracted considerable attention in recent years in the discovery of agrochemicals. As a distinct molecular scaffold, indole offers multiple modifiable sites and is extensively used in the development of new pesticides, such as fungicides, insecticides, herbicides, and antibacterial agents. Additionally, some indole derivatives can interact with various biological targets, enabling effective control of pathogens, pests, and weeds.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Advanced Production and Intelligent Systems (ARISE), Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
The increasing frequency of extreme weather events affects ecosystems and threatens food production. The reduction of chemical pesticides, together with other ecological approaches, is crucial to more sustainable agriculture. Plant-parasitic nematodes (PPN), especially root-knot nematodes (RKN), spp.
View Article and Find Full Text PDFJ Nematol
February 2025
Department of Nematology, University of California Riverside, 3401 Watkins Drive, Riverside, CA 92521, U.S.A.
Fluensulfone is the active ingredient of the non-fumigant nematicide Nimitz. It is much less harmful to the environment and has much improved worker safety compared to broad-spectrum fumigant nematicides. The product is registered for use in a variety of crops, including fruiting vegetables, and is applied to soil 7-14 days before seeding or planting.
View Article and Find Full Text PDFMol Divers
September 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
Plant-parasitic nematodes are primary pathogen that cause global crop yield losses, the economic cost to global agriculture is $157 billion a year. With the prohibition of highly toxic chemical nematicides, there are few nematicides available for prevention and control of nematodes. Tioxazafen (3-phenyl-5-thiophen-2-yl-1,2,4-oxadiazole) is a new broad-spectrum nematicide with good control effects against various nematodes.
View Article and Find Full Text PDFJ Invertebr Pathol
August 2025
School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA; Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA. Electronic address:
Previous studies conducted by our team have shown that three secondary metabolites (SMs) from Photorhabdus luminescens sonorensis, trans-cinnamic acid (TCA), (4E)-5-phenyl-4-pentenoic acid (PPA), and indole, exhibit nematicidal and/or nematistatic activities against root knot and citrus nematodes, with no discernible effects on non-target entomopathogenic nematodes (EPNs). To further explore the post-exposure fitness of EPNs, this study focused on the effects of these SMs on the virulence and reproductive fitness of three EPNs: Heterorhabditis sonorensis (the native host of P. l.
View Article and Find Full Text PDF