98%
921
2 minutes
20
The elastic modulus, or slope of the stress-strain curve, is an important metric for evaluating tissue functionality, particularly for load-bearing tissues such as tendon. The applied force can be tracked directly from a mechanical testing system and converted to stress using the tissue cross-sectional area; however, strain can only be calculated in post-processing by tracking tissue displacement from video collected during mechanical testing. Manual tracking of Verhoeff stain lines pre-marked on the tissue is time-consuming and highly dependent upon the user. This paper details the development and testing of an automated processing method for strain calculations using Harris corner detection. The automated and manual methods were compared in a dataset consisting of 97 rat tendons (48 Achilles tendons, 49 supraspinatus tendons), divided into ten subgroups for evaluating the effects of different therapies on tendon mechanical properties. The comparison showed that average percent differences between the approaches were 0.89% and -2.10% for Achilles and supraspinatus tendons, respectively. The automated approach reduced processing time by 83% and produced similar results to the manual method when comparing the different subgroups. This automated approach to track tissue displacements and calculate elastic modulus improves post-processing time while simultaneously minimizing user dependency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10231651 | PMC |
http://dx.doi.org/10.1007/s10439-022-02946-9 | DOI Listing |
J Phys Chem Lett
September 2025
Department of Earth System Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
We present a systematic high-pressure investigation of the chlorine-functionalized two-dimensional hybrid perovskite (ClPMA)PbI, integrating high-pressure synchrotron powder X-ray diffraction (HP-PXRD), photoluminescence spectroscopy (HP-PL), and first-principles density functional theory (DFT) calculations. Under hydrostatic compression up to 6.18 (±0.
View Article and Find Full Text PDFRSC Adv
September 2025
Computational Biotechnology, RWTH Aachen University Worringerweg 3 52074 Aachen Germany
Recent advances in two-dimensional (2D) magnetic materials have promoted significant progress in low-dimensional magnetism and its technological applications. Among them, atomically thin chromium trihalides (CrX with X = Cl, Br, and I) are among the most studied 2D magnets due to their unique magnetic properties. In this work, we employ density functional theory calculations to investigate the mechanical and electronic properties of CrX monolayers in the presence of in-plane uniaxial strain.
View Article and Find Full Text PDFChem Sci
September 2025
College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 P. R. China
Sodium-ion batteries (SIBs) are promising alternatives to lithium-ion batteries (LIBs) owing to abundant resources and cost-effectiveness. However, cathode materials face persistent challenges in structural stability, ion kinetics, and cycle life. This review highlights the transformative potential of high-entropy (HE) strategies that leveraging multi-principal element synergies to address these limitations entropy-driven mechanisms.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
Multifunctional materials that simultaneously possess intrinsic magnetic and superhard properties, particularly those composed of light elements, have a wide range of applications in advanced sensors, shielding, durable devices, and other fields. However, research on the development and understanding of such materials remains limited. In this study, a series of 3D C covalent networks derived from the C fullerene precursor were theoretically designed.
View Article and Find Full Text PDFJ Robot Surg
September 2025
Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UT Health San Antonio, 7703 Floyd Curl Drive, 7836, San Antonio, TX, 78229-3900, USA.
To evaluate intraoperative ventilatory mechanics during robotic-assisted hysterectomy in obese women with endometrial cancer and introduce the concept of a physiologic "ceiling effect" in respiratory strain. We conducted a retrospective cohort study of 89 women with biopsy-confirmed endometrial cancer who underwent robotic-assisted total hysterectomy between 2011 and 2015. Intraoperative ventilatory parameters, including plateau airway pressure and static lung compliance, were recorded at five-minute intervals.
View Article and Find Full Text PDF