Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The fine-needle aspiration (FNA) diagnosis of thyroid Hürthle cell neoplasms (HCNs) remains challenging. This study explored a possible association of copy number variations (CNVs) with Hürthle cell lesions of the thyroid.

Methods: Thyroid FNA cases that were diagnosed as follicular lesion of undetermined significance (FLUS) or follicular neoplasm (FN)/HCN for which the ThyroSeq version 3 genomic classifier test was performed were retrieved.

Results: A total of 324 thyroid FNA cases (228 FLUS cases, 46 HCN cases, and 50 FN cases) were included in the study. FLUS cases were further classified as Hürthle cell type (follicular lesion of undetermined significance-Hürthle cell type [FLUS-HCT]; 20 cases) or non-Hürthle cell type (follicular lesion of undetermined significance-non-Hürthle cell type [FLUS-NHCT]; 208 cases). HCN and FLUS-HCT cases showed a higher prevalence of CNVs (23 of 66 [35%]) in comparison with those classified as FN or FLUS-NHCT (14 of 258 [5%]; P < .001). A total of 105 patients had histopathologic follow-up. Cases with CNVs were more likely to be neoplastic (18 of 26 [69%]) and associated with Hürthle cell changes (14 of 26 [54%]) in comparison with cases without any molecular alterations (neoplastic, 8 of 24 [33%]; Hürthle cell changes, 2 of 24 [8%]; P < .05). In HCN/FLUS-HCT cases with CNVs (n = 14), Hürthle cell changes (13 of 14 [93%]) and neoplasms (9 of 14 [64%]) were more likely to be seen on surgical follow-up in comparison with the 17 cases without CNVs (Hürthle cell changes, 6 of 17 [35%]; neoplastic, 3 of 17 [18%]; P < .05).

Conclusions: CNVs identified in thyroid FNA cases are associated with Hürthle cell morphology and are suggestive of a neoplasm with Hürthle cell features in thyroid FNAs classified as FLUS-HCT/HCN. This finding may be helpful in triaging patients who would benefit from surgical management.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cncy.22569DOI Listing

Publication Analysis

Top Keywords

hürthle cell
40
thyroid fna
16
cell type
16
cell changes
16
cases
14
cell
13
associated hürthle
12
cnvs hürthle
12
fna cases
12
follicular lesion
12

Similar Publications

Viscosity-sensitive fluorescent probes based on the hemicyanine for the organelle-specific visualization during autophagy and ferroptosis.

Spectrochim Acta A Mol Biomol Spectrosc

September 2025

College of Chemistry, Chemical Engineering and Material Science, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China; Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China. Electronic address: g

The dynamic monitoring of cell death processes remains a significant challenge due to the scarcity of highly sensitive molecular tools. In this study, two hemicyanine-based probes (5a-5b) with D-π-A structures were developed for organelle-specific viscosity monitoring. Both probes exhibited correlation with the Förster-Hoffmann viscosity-dependent relationship (R > 0.

View Article and Find Full Text PDF

Warfarin is a widely used vitamin K antagonist (VKA) with known pleiotropic effects beyond anticoagulation. Preclinical and case-control evidence suggests that warfarin may affect hematopoiesis, but longitudinal human evidence is lacking. To explore this potential effect, we conducted a post-hoc analysis of participants in the Hokusai-VTE and ENGAGE AF-TIMI 48 trials, which randomized patients to warfarin or the direct oral anticoagulant edoxaban with routine laboratory testing at predefined follow-up visits.

View Article and Find Full Text PDF

Three antileishmanial compounds incorporating a butylated hydroxytoluene (BHT) moiety and an acrylate-based Michael acceptor scaffold were rationally designed from the lead structures LQFM064 and LQFM332, which feature a chalcone-derived core. Their activities against Leishmania (L.) amazonensis were evaluated.

View Article and Find Full Text PDF

Why transport matters: an update on carrier proteins in Apicomplexan parasites.

Curr Opin Microbiol

September 2025

Cryptosporidiosis Laboratory, The Francis Crick Institute, London, United Kingdom. Electronic address:

The movement of molecules across the membranous barriers of a cell is fundamental to cellular homeostasis in every living organism. This vital process is facilitated through a mechanistically diverse class of proteins, collectively known as membrane transporters. Among these are so-called carrier proteins that can function in passive and active transport mechanisms.

View Article and Find Full Text PDF

Resolve and regulate: Alum nanoplatform coordinating STING availability and agonist delivery for enhanced anti-tumor immunotherapy.

Biomaterials

September 2025

Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:

The stimulator of interferon genes (STING) pathway represents a promising target in cancer immunotherapy. However, the clinical translation of cyclic dinucleotide (CDN)-based STING agonists remains hindered by insufficient formation of functional CDN-STING complexes. This critical bottleneck arises from two interdependent barriers: inefficient cytosolic CDN delivery and tumor-specific STING silencing via DNA methyltransferase-mediated promoter hypermethylation.

View Article and Find Full Text PDF