98%
921
2 minutes
20
The emergence of smartphone-based imaging devices has been a boon in the field of ophthalmology, especially in obtaining high-quality ocular images. They can be specialized and utilized for imaging-specific regions of the eye. Among the multitude of applications of smartphone-based imaging, one of the upcoming major use is to image the microbiological world. Previous few reports have described attaching magnifying lenses of various types to the smartphone camera and transforming it into a microscope for imaging fungal hyphae and ocular surface parasites. We describe a novel technique of attaching the smartphone-based intraocular lens microscope (IOLSCOPE) to the slit lamp, thereby utilizing the slit lamp joystick for moving the smartphone over the concerned slide specimen to make it steady and obtain images of high resolution. This innovative do-it-yourself novel modification is especially useful in peripheral centers, vision centers, and local clinics for immediate screening and identification of microbial pathogens such as fungi and ocular surface parasites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9240485 | PMC |
http://dx.doi.org/10.4103/ijo.IJO_2389_21 | DOI Listing |
J Refract Surg
September 2025
Purpose: To evaluate tilt, decentration, and axial stability of the Clareon toric intraocular lens (TIOL) (CNW0T3-9; Alcon Laboratories, Inc) over a 6-month follow-up period.
Methods: A single-center, prospective, interventional clinical trial was conducted with a study population of 130 eyes from 82 patients who received a Clareon TIOL. Tilt, decentration, and the aqueous depth were determined preoperatively and at 1 week and 6 months postoperatively using anterior segment optical coherence tomography (Casia 2; Tomey Corporation).
Purpose: To evaluate visual and refractive outcomes, visual quality, patient satisfaction, and spectacle independence 3 months after phacoemulsification with bilateral non-diffractive enhanced depth of focus (EDOF) lens implantation.
Methods: This study included 68 eyes of 34 consecutive patients, with 51.5% undergoing refractive lens exchange and 48.
J Refract Surg
September 2025
Purpose: To compare postoperative vault measurements between horizontal and vertical fixation of the Implantable Collamer Lens (ICL) (KS-AquaPORT; STAAR Surgical) when its size is determined using the KS formula.
Methods: This retrospective study analyzed 2,343 eyes from 1,275 patients who underwent myopic ICL implantation. Pre-operative anterior segment optical coherence tomography (AS-OCT) (CASIA 2; Tomey Corporation) was performed in both horizontal and vertical orientations.
J Refract Surg
September 2025
From the Department of Ophthalmology, Goethe-University, Frankfurt am Main, Germany and.
Purpose: To evaluate intraocular lens (IOL) power calculation of a non-diffractive extended depth of focus (EDOF) IOL after myopic laser in situ keratomileusis (LASIK) without historical data.
Methods: In this consecutive case series, patients who had undergone lens surgery with implantation of a non-diffractive EDOF IOL after myopic laser in situ keratomileusis (LASIK) at the Department of Ophthalmology, University Hospital Frankfurt, Frankfurt, Germany, were included. Preoperative assessments included biometry and tomography using Scheimpflug technology (Pentacam; Oculus Optikgeräte GmbH).
J Refract Surg
September 2025
From the Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
Purpose: To determine the accuracy of a new machine learning-based open-source IOL formula (PEARLS-DGS) in 100 patients who underwent uncomplicated cataract surgery and had a history of laser refractive surgery for myopic defects.
Methods: The setting for this retrospective study was HUMANITAS Research Hospital, Milan, Italy. Data from 100 patients with a history of photorefractive keratectomy or laser in situ keratomileusis were retrospectively analyzed to assess the accuracy of the formula.