A Photoresponsive Receptor with a 10 Magnitude of Reversible Anion-Binding Switching.

Chemistry

Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6119, USA.

Published: May 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In a leap toward anion separation that uses only energy input for binding and release cycles, we report herein a new class of photoswitchable anion receptors featuring a diiminoguanidinium functionality that displays a change of more than five orders of magnitude in switched-off binding strength towards sulfate, a representative oxyanion, upon photoirradiation with UV light. The (E,E)-2-pyridyl-diiminoguanidinium cation, synthesized as the triflate salt, binds sulfate with extraordinary strength in [D ]DMSO owing to its bidentate guanidinium hydrogen bonding, which can chelate the O-S-O edge of sulfate. Upon photoisomerization to the Z,Z isomer, the anion-binding site is essentially shut off by intramolecular hydrogen bonds to the 2-pyridyl substituents, as shown by anion-binding titrations, theoretical calculations, and X-ray structural analysis. This approach will allow the development of advanced anion-separation cycles that use only energy input and generate no chemical waste, and thus address challenging chemical separation problems in a more sustainable way.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202200719DOI Listing

Publication Analysis

Top Keywords

energy input
8
photoresponsive receptor
4
receptor magnitude
4
magnitude reversible
4
reversible anion-binding
4
anion-binding switching
4
switching leap
4
leap anion
4
anion separation
4
separation energy
4

Similar Publications

Waste three-way catalysts (TWCs) and waste LiCoO batteries represent critical environmental challenges due to hazardous components yet contain high-value resources, and their recycling has garnered widespread attention. We propose a novel 'waste-to-waste' synergistic recycling where spent LiCoO batteries reconstruct mineral phases of waste TWCs, enabling co-recovery of platinum group metals and Li/Co without traditional oxidants. However, the environmental performance of this process still requires further analysis.

View Article and Find Full Text PDF

Functional synapses between neurons and small cell lung cancer.

Nature

September 2025

Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.

Small cell lung cancer (SCLC) is a highly aggressive type of lung cancer, characterized by rapid proliferation, early metastatic spread, frequent early relapse and a high mortality rate. Recent evidence has suggested that innervation has an important role in the development and progression of several types of cancer. Cancer-to-neuron synapses have been reported in gliomas, but whether peripheral tumours can form such structures is unknown.

View Article and Find Full Text PDF

The calculation of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap for chemical molecules is computationally intensive using quantum mechanics (QM) methods, while experimental determination is often costly and time-consuming. Machine Learning (ML) offers a cost-effective and rapid alternative, enabling efficient predictions of HOMO-LUMO gap values across large data sets without the need for extensive QM computations or experiments. ML models facilitate the screening of diverse molecules, providing valuable insights into complex chemical spaces and integrating seamlessly into high-throughput workflows to prioritize candidates for experimental validation.

View Article and Find Full Text PDF

Active control of flexible spacecraft in orbit based on partial differential equations.

PLoS One

September 2025

Hunan Mingxiang Aviation Technology Co., Ltd., Changsha, Hunan, China.

Flexible spacecraft possess the ability to adapt to complex environments and use energy more efficiently, offering enhanced flexibility and stability in space missions, particularly in tasks with significant external disturbances such as deep space exploration and satellite attitude control. However, vibration suppression in flexible spacecraft remains a critical challenge. This study addresses the problem of vibration suppression in flexible spacecraft systems under external disturbances and input constraints.

View Article and Find Full Text PDF

Unwanted Couplings Can Induce Amplification in Quantum Memories despite Negligible Apparent Noise.

Phys Rev Lett

August 2025

University of Calgary, Institute for Quantum Science and Technology, and Department of Physics and Astronomy, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.

Theoretical quantum memory design often involves selectively focusing on certain energy levels to mimic an ideal Λ configuration, a common approach that may unintentionally overlook the impact of neighboring levels or undesired couplings. While this simplification may be justified in certain protocols or platforms, it can significantly distort the achievable memory performance. Through numerical semiclassical analysis, we show that the presence of unwanted energy levels and undesired couplings in an absorptive memory based on a nitrogen-vacancy center can significantly amplify the signal, resulting in memory efficiencies exceeding unity, a clear indication of unwanted noise at the quantum level.

View Article and Find Full Text PDF