Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

For more than one century, photochemical [2+2]-cycloadditions have been used by synthetic chemists to make cyclobutanes, four-membered carbon-based rings. In this reaction, typically two olefin subunits (two π-electrons per olefin) cyclize to form two new C-C σ-bonds. Although the development of photochemical [2+2]-cycloadditions has made enormous progress within the last century, research has been focused on such [2π+2π]-systems, in which two π-bonds are converted into two new σ-bonds. Here we report an intermolecular [2+2]-photocycloaddition that uses bicyclo[1.1.0]butanes as 2σ-electron reactants. This strain-release-driven [2π+2σ]-photocycloaddition reaction was realized by visible-light-mediated triplet energy transfer catalysis. A simple, modular and diastereoselective synthesis of bicyclo[2.1.1]hexanes from heterocyclic olefin coupling partners, namely coumarins, flavones and indoles, is disclosed. Given the increasing importance of bicyclo[2.1.1]hexanes as bioisosteres-groups that convey similar biological properties to those they replace-in pharmaceutical research and considering their limited access, there remains a need for new synthetic methodologies. Applying this strategy enabled us to extend the intermolecular [2+2]-photocycloadditions to σ-bonds and provides previously inaccessible structural motifs.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-022-04636-xDOI Listing

Publication Analysis

Top Keywords

triplet energy
8
energy transfer
8
photochemical [2+2]-cycloadditions
8
intermolecular [2π+2σ]-photocycloaddition
4
[2π+2σ]-photocycloaddition enabled
4
enabled triplet
4
transfer century
4
century photochemical
4
[2+2]-cycloadditions synthetic
4
synthetic chemists
4

Similar Publications

The doped topological insulator Cu_{x}Bi_{2}Se_{3} has attracted considerable attention as a new platform for studying novel properties of spin-triplet and topological superconductivity. In this work, we performed synchrotron x-ray diffraction measurements on Cu_{x}Bi_{2}Se_{3} (0.24≤x≤0.

View Article and Find Full Text PDF

Thermal Cross-linked Electron Transport Polymers for Suppressing Efficiency Roll-off in Green Solution-Processed Inverted OLEDs.

ACS Appl Mater Interfaces

September 2025

Organic Electronic Materials Laboratory, Department of Information Display, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea.

Solution-processed phosphorescent inverted organic light-emitting diodes (s-IOLEDs) have garnered significant attention due to their excellent stability and high performance. However, frequently used inorganic electron transport layers usually cause exciton dissociation at the emitting layer interface, leading to low device efficiency and severe efficiency roll-off. In this work, we designed a cross-linkable triazine-grafted electron transport copolymer (PPDPT--PBCB) with a high triplet energy (3.

View Article and Find Full Text PDF

Spin Qubit Properties of the Boron-Vacancy/Carbon Defect in the Two-Dimensional Hexagonal Boron Nitride.

J Phys Condens Matter

September 2025

Department of Physics, Tuskegee University, 1200 West Montgomery Road, 106 Chappie James, Tuskegee, Alabama, 36088-1920, UNITED STATES.

Spin qubit defects in two-dimensional materials have a number of advantages over those in three-dimensional hosts including simpler technologies for the defect creation and control, as well as qubit accessibility. In this work, we select the VBCB defect in the hexagonal boron nitride (hBN) as a possible optically controllable spin qubit and explain its triplet ground state and neutrality. In this defect a boron vacancy is combined with a carbon dopant substituting the closest boron atom to the vacancy.

View Article and Find Full Text PDF

Effect of Oxygen Exposure on the Triplet Excitation Dynamics of the Monomeric LHCII Complex from Spinach.

J Phys Chem B

September 2025

Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.

Light-harvesting complex IIs (LHCIIs) are the major antenna in higher plants, balancing light capture through photoprotection. While it naturally forms trimers, stress conditions can induce monomerization, altering pigment interactions. Here, we explored how molecular oxygen affects triplet excited-state dynamics in LHCII monomers using time-resolved transient absorption spectroscopy under aerobic and anaerobic conditions.

View Article and Find Full Text PDF

B,N-substituted graphene ribbons are computationally designed and their spectroscopic properties are systematically explored with wave-function-based electronic structure methods. All B,N-graphene ribbons exhibit exceptionally small S-T energy gaps. The oscillator strength of the S-S transition increases monotonically with the length of the ribbons.

View Article and Find Full Text PDF