98%
921
2 minutes
20
Old yellow enzymes (OYEs) play a critical role in antioxidation, detoxification and ergot alkaloid biosynthesis processes in various organisms. The yeast- and bacteria-like OYEs have been structurally characterized earlier, however, filamentous fungal pathogens possess a novel OYE class, that is, class III, whose biochemical and structural intricacies remain unexplored to date. Here, we present the 1.6 Å X-ray structure of a class III member, OYE 6 from necrotrophic fungus Ascochyta rabiei (ArOYE6), in flavin mononucleotide (FMN)-bound form (PDB ID-7FEV) and provide mechanistic insights into their catalytic capability. We demonstrate that ArOYE6 exists as a monomer in solution, forms (β/α) barrel structure harbouring non-covalently bound FMN at cofactor binding site, and utilizes reduced nicotinamide adenine dinucleotide phosphate as its preferred reductant. The large hydrophobic cavity situated above FMN, specifically accommodates 12-oxo-phytodienoic acid and N-ethylmaleimide substrates as observed in ArOYE6-FMN-substrate ternary complex models. Site-directed mutations in the conserved catalytic (His196, His199 and Tyr201) and FMN-binding (Lys249 and Arg348) residues render the enzyme inactive. Intriguingly, the ArOYE6 structure contains a novel C-terminus (369-445 residues) made of three α-helices, which stabilizes the FMN binding pocket as its mutation/truncation lead to complete loss of FMN binding. Moreover, the loss of the extended C-terminus does not alter the monomeric nature of ArOYE6. In this study, for the first time, we provide the structural and biochemical insights for a fungi-specific class III OYE homologue and dissect the oxidoreductase mechanism. Our findings hold broad biological significance during host-fungus interactions owing to the conservation of this class among pathogenic fungi, and would have potential implications in the pharmacochemical industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/febs.16445 | DOI Listing |
J Mass Spectrom
October 2025
Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome, Rome, Italy.
Ionic liquids (ILs) are a class of organic salts with melting points below 100°C. Owing to their unique chemical and physical properties, they are used as solvents and catalysts in various chemical transformations, progressively replacing common volatile organic solvents (VOCs) in green synthetic applications. However, their intrinsic ionic nature can restrict the use of mass spectrometric techniques to monitor the time progress of a reaction occurring in an IL medium, thus preventing one from following the formation of the reaction products or intercepting the reaction intermediates.
View Article and Find Full Text PDFCatheter Cardiovasc Interv
September 2025
Department of Cardiology, Barts Heart Center, Barts Health NHS Trust, London, UK.
Background: Degeneration of surgical bioprosthetic aortic valves is increasingly common. Redo surgical aortic valve replacement carries substantial morbidity and mortality, particularly in elderly or high-risk patients. Valve-in-valve (ViV) transcatheter aortic valve implantation (TAVI) has become an established alternative, though data on the performance of self-expanding Portico and Navitor valves remain limited.
View Article and Find Full Text PDFEur J Pharm Biopharm
September 2025
RaDes GmbH, Schnackenburgallee 114, 22525 Hamburg, Germany. Electronic address:
Polysorbate 20 (PS20) is one of the most commonly used non-ionic surfactants in cosmetics, pharmaceuticals and food products. Considered as biocompatible and non-irritating, it is further valued for its solubilising and protein stabilising properties. PS20 is manufactured through a multi-stage reaction of sorbitol with various fatty acids and ethylene oxide, resulting in a complex mixture of components with different molecular weights and polarity.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), Okhla Phase III, New Delhi, 110020, India; Infosys Centre for Artificial Intelligence, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), Okhla Phase III, New Delhi, 110020, In
Understanding the structural and functional diversity of toxin proteins is critical for elucidating macromolecular behavior, mechanistic variability, and structure-driven bioactivity. Traditional approaches have primarily focused on binary toxicity prediction, offering limited resolution into distinct modes of action of toxins. Here, we present MultiTox, an ensemble stacking framework for the classification of toxin proteins based on their molecular mode of action: neurotoxins, cytotoxins, hemotoxins, and enterotoxins.
View Article and Find Full Text PDFPLoS Pathog
September 2025
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
The parasitic protozoan Trypanosoma brucei has a single mitochondrial nucleoid, anchored to the basal body of the flagellum via the tripartite attachment complex (TAC). The detergent-insoluble TAC is essential for mitochondrial genome segregation during cytokinesis. The TAC assembles de novo in a directed way from the probasal body towards the kDNA.
View Article and Find Full Text PDF