98%
921
2 minutes
20
Objective: Although pituitary adenomas (PAs) are common intracranial tumors, literature evaluating the utility of comorbidity indices for predicting postoperative complications in patients undergoing pituitary surgery remains limited, thereby hindering the development of complex models that aim to identify high-risk patient populations. We utilized comparative modeling strategies to evaluate the predictive validity of various comorbidity indices and combinations thereof in predicting key pituitary surgery outcomes.
Methods: The Nationwide Readmissions Database was used to identify patients who underwent pituitary tumor operations (n = 19,653) in 2016-2017. Patient frailty was assessed using the Johns Hopkins Adjusted Clinical Groups (ACG) System. The Charlson Comorbidity Index (CCI) and Elixhauser Comorbidity Index (ECI) were calculated for each patient. Five sets of generalized linear mixed-effects models were developed, using as the primary predictors 1) frailty, 2) CCI, 3) ECI, 4) frailty + CCI, or 5) frailty + ECI. Complications of interest investigated included inpatient mortality, nonroutine discharge (e.g., to locations other than home), length of stay (LOS) within the top quartile (Q1), cost within Q1, and 1-year readmission rates.
Results: Postoperative mortality occurred in 73 patients (0.4%), 1-year readmission was reported in 2994 patients (15.2%), and nonroutine discharge occurred in 2176 patients (11.1%). The mean adjusted all-payer cost for the procedure was USD $25,553.85 ± $26,518.91 (Q1 $28,261.20), and the mean LOS was 4.8 ± 7.4 days (Q1 5.0 days). The model using frailty + ECI as the primary predictor consistently outperformed other models, with statistically significant p values as determined by comparing areas under the curve (AUCs) for most complications. For prediction of mortality, however, the frailty + ECI model (AUC 0.831) was not better than the ECI model alone (AUC 0.831; p = 0.95). For prediction of readmission, the frailty + ECI model (AUC 0.617) was not better than the frailty model alone (AUC 0.606; p = 0.10) or the frailty + CCI model (AUC 0.610; p = 0.29).
Conclusions: This investigation is to the authors' knowledge the first to implement mixed-effects modeling to study the utility of common comorbidity indices in a large, nationwide cohort of patients undergoing pituitary surgery. Knowledge gained from these models may help neurosurgeons identify high-risk patients who require additional clinical attention or resource utilization prior to surgical planning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/2022.1.JNS22197 | DOI Listing |
Clin Transl Gastroenterol
September 2025
Department of Internal Medicine, School of Medicine, University of Medicine and Pharmacy at Ho Cho Minh City, Vietnam.
Background: Severe acute pancreatitis (SAP) is a life-threatening condition requiring early risk stratification. While the Bedside Index for Severity in Acute Pancreatitis (BISAP) is widely used, its reliance on complex parameters limits its applicability in resource-constrained settings. This study introduces a decision tree model based on Classification and Regression Tree (CART) analysis, utilizing Neutrophil-to-Lymphocyte Ratio (NLR) and C-reactive Protein (CRP), as a simpler alternative for early SAP prediction.
View Article and Find Full Text PDFPLoS One
September 2025
School of Electrical and Information Engineering, Hunan Institute of Technology, Hengyang, Hunan, China.
Knowledge tracing can reveal students' level of knowledge in relation to their learning performance. Recently, plenty of machine learning algorithms have been proposed to exploit to implement knowledge tracing and have achieved promising outcomes. However, most of the previous approaches were unable to cope with long sequence time-series prediction, which is more valuable than short sequence prediction that is extensively utilized in current knowledge-tracing studies.
View Article and Find Full Text PDFPLoS One
September 2025
Center for Radiological Research, Columbia University Irving Medical Center, New York, New York, United States of America.
In the event of a large-scale radiological or nuclear emergency, a rapid, high-throughput screening tool will be essential for efficient triage of potentially exposed individuals, optimizing scarce medical resources and ensuring timely care. The objective of this work was to characterize the effects of age and sex on two intracellular lymphocyte protein biomarkers, BAX and p53, for early radiation exposure classification in the human population, using an imaging flow cytometry-based platform for rapid biomarker quantification in whole blood samples. Peripheral blood samples from male and female donors, across three adult age groups (young adult, middle-aged, senior) and a juvenile cohort, were X-irradiated (0-5 Gy), and biomarker expression was quantified at two- and three-days post-exposure.
View Article and Find Full Text PDFPLoS One
September 2025
Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
Background: Metabolic syndrome (MetS) and sarcopenia are major global public health problems, and their coexistence significantly increases the risk of death. In recent years, this trend has become increasingly prominent in younger populations, posing a major public health challenge. Numerous studies have regarded reduced muscle mass as a reliable indicator for identifying pre-sarcopenia.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
September 2025
Obstructive sleep apnea (OSA), one of the most common sleep disorders globally, is closely linked to brain function. Resting-state electroencephalography (EEG), due to its convenience, cost-effectiveness, and high temporal resolution, serves as a valuable tool for exploring the human brain function. This study utilized a large cohort with 968 participants who joined in 15-minute daytime resting-state EEG acquisition and overnight polysomnography (PSG) monitoring.
View Article and Find Full Text PDF