Extraction and analysis of an organophosphate salt nucleating agent from irradiated polypropylene resin.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess

Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA.

Published: May 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although it is well-established that irradiation of produce can reduce food-borne pathogens and spoilage organisms, data on the effect of irradiation on polymer additives in food packaging materials are limited, particularly for those additives used in packaging leafy greens or in current food packaging materials. We investigated the effects of irradiating a nucleating agent, aluminium, hydroxybis[2,4,8,10-tetrakis(1,1-dimethylethyl)-6-hydroxy-12H-dibenzo [d,g][1,3,2]dioxaphosphocin 6-oxidato]- (CAS Reg. No. 151841-65-5), at doses of 1-20 kGy in polypropylene. That nucleating agent was then extracted using accelerated solvent extraction and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), liquid chromatography-photodiode array detection (LC-PDA), and solid-state nuclear magnetic resonance (SSNMR) spectroscopy. We found this nucleating agent was not significantly affected by radiation treatment up to 20 kGy. Therefore, this nucleating agent could potentially be useful in food packaging materials that will be irradiated at doses of 20 kGy or less. Establishing which additives are stable under anticipated irradiation doses will help support safety evaluation of food packaging materials.

Download full-text PDF

Source
http://dx.doi.org/10.1080/19440049.2022.2037727DOI Listing

Publication Analysis

Top Keywords

nucleating agent
20
food packaging
16
packaging materials
16
nucleating
5
agent
5
packaging
5
extraction analysis
4
analysis organophosphate
4
organophosphate salt
4
salt nucleating
4

Similar Publications

Starch-based biopolymer films with nitrogen-doped carbon quantum dots for enhanced barrier functions via surface microarchitectures.

Int J Biol Macromol

September 2025

Department of Nanoscience and Nanoengineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey; Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey. Electronic address:

This study presents the development of multifunctional starch-based biopolymer films reinforced with nitrogen-doped carbon quantum dots (N-CQDs), synthesized via a hydrothermal method, and exhibiting a high quantum yield (~70 %). N-CQDs were incorporated into the starch matrix at varying concentrations (0.1-1.

View Article and Find Full Text PDF

Biomass-based polymers such as poly(lactic acid) (PLA) have attracted much attention, because they are renewable, biocompatible, and nontoxic to the environment and have been used in various fields such as biomedical, agricultural, and food packaging industries. However, one of the common drawbacks of PLA-based materials is their low glass transition temperature in the amorphous state, while adding phenylphosphonic acid zinc salt (PPA-Zn) as a nucleating agent was found to be a promising method to improve the physical property of PLA. On the other hand, degradation of PLA-based materials in the environment may cause the pollution from the metal of a nucleating agent in PLA and quantification of nucleating agents in polymers is of interest.

View Article and Find Full Text PDF

Time-Resolved Small-Angle X-Ray Studies of Spherical Micelle Formation and Growth During Polymerization-Induced Self-Assembly in Polar Solvents.

Small

September 2025

South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South Chi

Self-assembled poly(2-dimethylaminoethyl methacrylate)-poly(2-(diisopropylamino)ethyl methacrylate) (PDMA-PDPA) diblock copolymer nanoparticles are widely employed in biological applications, driving the need for a robust and scalable production method. Although polymerization-induced self-assembly (PISA) enables efficient nanoparticle synthesis at high solids content, its research and application to PDMA-PDPA are limited, likely due to kinetic trapping. Leveraging our recently developed generic time-resolved small-angle X-ray scattering (TR-SAXS) approach for PISA in non-polar media, a reversible addition-fragmentation chain transfer-mediated PDMA-PDPA PISA process in polar solvent that produces spherical micelles is examined.

View Article and Find Full Text PDF

Typically, specific amide nucleating agents (NAs) that can form nanofibrous networks by self-assembly are vital to achieve poly(l-lactic acid) (PLA) with good heat resistance and transparency. However, the long time required for self-assembly during rapid cooling results in a narrow crystallization window for induced PLA, thus requiring a combination of high annealing temperature and a long annealing time. Herein, a synergistic nucleation strategy was introduced to address this challenge, i.

View Article and Find Full Text PDF

Tuning Anisotropic Swelling in a Liquid Crystalline Polyester-Polyethylene Glycol Hydrogel via Large Strain and Annealing.

ACS Macro Lett

September 2025

Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, P. R. China.

The anisotropic swelling behavior of hydrogels can be controlled by the alignment of their molecular chains. In this work, we report a strategy to precisely control the anisotropic swelling direction of hydrogels by leveraging a rationally designed liquid crystalline polymer in combination with large strain and annealing. A liquid crystalline polyester-polyethylene glycol random block copolymer (LCP--PEG) is synthesized via one-pot polycondensation.

View Article and Find Full Text PDF