98%
921
2 minutes
20
Background: Accurate forecasting of the risk of death is crucial for people living with head and neck mucosal melanoma (HNMM). We aimed to establish and validate an effective prognostic nomogram for HNMM.
Methods: Patients with HNMM who underwent surgery between 2010 and 2015 were selected from the Surveillance, Epidemiology, and End Results (SEER) database for model construction. After eliminating invalid and missing clinical information, 288 patients were ultimately identified and randomly divided into a training cohort (199 cases) and a validation cohort (54 cases). Univariate and multivariate Cox proportional hazards regression analyses were performed in the training cohort to identify prognostic variables. Independent influencing factors were used to build the model. Through internal verification (training cohort) and external verification (validation cohort), the concordance indexes (C-indexes) and calibration curves were used to evaluate the predictive value of the nomogram.
Results: For the training cohort, five independent risk predictors, namely age, location, T stage, N stage, and surgery, were selected, and nomograms with estimated 1- and 3-year overall survival (OS) and cancer-specific survival (CSS) were established. The C-index showed that the predictive performance of the nomogram was better than that of the TNM staging system and was internally verified (through the training queue: OS: 0.764 vs 0.683, CSS: 0.783 vs 0.705) and externally verified (through the verification queue: OS: 0.808 vs 0.644, CSS: 0.823 vs 0.648). The calibration curves also showed good agreement between the prediction based on the nomogram and the observed survival rate.
Conclusion: The nomogram prediction model can more accurately predict the prognosis of HNMM patients than the traditional TNM staging system and may be beneficial for guiding clinical treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8922241 | PMC |
http://dx.doi.org/10.2147/IJGM.S352701 | DOI Listing |
Genome Biol
September 2025
Center for Genomic Medicine, Cardiovascular Research Center, , Massachusetts General Hospital Simches Research Center, 185 Cambridge Street, CPZN 5.238,, Boston, MA, 02114, USA.
Background: Rare genetic variation provided by whole genome sequence datasets has been relatively less explored for its contributions to human traits. Meta-analysis of sequencing data offers advantages by integrating larger sample sizes from diverse cohorts, thereby increasing the likelihood of discovering novel insights into complex traits. Furthermore, emerging methods in genome-wide rare variant association testing further improve power and interpretability.
View Article and Find Full Text PDFAlzheimers Dement
September 2025
Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.
Introduction: Mild cognitive impairment (MCI) represents a transitional stage between normal aging and dementia. We investigate associations among cardiovascular and metabolic disorders (hypertension, diabetes mellitus, and hyperlipidemia) and diagnosis (normal; amnestic [aMCI]; and non-amnestic [naMCI]).
Methods: Multinomial logistic regressions of participant data (N = 8737; age = 70.
Nat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFCell Death Discov
September 2025
Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.
Ado-trastuzumab is considered a standard treatment for patients with HER2+ metastatic breast cancer (mBC). Current clinical practices do not reliably predict therapeutic outcomes for patients who are refractory to therapy. Long noncoding RNAs (lncRNAs) are emerging as critical regulators of gene expression and therapeutic resistance, and the use of lncRNAs as tumor biomarkers is becoming more common in other diseases.
View Article and Find Full Text PDFSci Rep
September 2025
Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.
Visceral adiposity has been proposed to be closely linked to cognitive impairment. This cross-sectional study aimed to evaluate the predictive value of Chinese Visceral Adiposity Index (CVAI) for mild cognitive impairment (MCI) in patients with type 2 diabetes mellitus (T2DM) and to develop a quantitative risk assessment model. A total of 337 hospitalized patients with T2DM were included and randomly assigned to a training cohort (70%, n = 236) and a validation cohort (30%, n = 101).
View Article and Find Full Text PDF