98%
921
2 minutes
20
Real-time quality assessment (rtQA) of functional magnetic resonance imaging (fMRI) based on blood oxygen level-dependent (BOLD) signal changes is critical for neuroimaging research and clinical applications. The losses of BOLD sensitivity because of different types of technical and physiological noise remain major sources of fMRI artifacts. Due to difficulty of subjective visual perception of image distortions during data acquisitions, a comprehensive automatic rtQA is needed. To facilitate rapid rtQA of fMRI data, we applied real-time and recursive quality assessment methods to whole-brain fMRI volumes, as well as time-series of target brain areas and resting-state networks. We estimated recursive temporal signal-to-noise ratio (rtSNR) and contrast-to-noise ratio (rtCNR), and real-time head motion parameters by a framewise rigid-body transformation (translations and rotations) using the conventional current to template volume registration. In addition, we derived real-time framewise (FD) and micro (MD) displacements based on head motion parameters and evaluated the temporal derivative of root mean squared variance over voxels (DVARS). For monitoring time-series of target regions and networks, we estimated the number of spikes and amount of filtered noise by means of a modified Kalman filter. Finally, we applied the incremental general linear modeling (GLM) to evaluate real-time contributions of nuisance regressors (linear trend and head motion). Proposed rtQA was demonstrated in real-time fMRI neurofeedback runs without and with excessive head motion and real-time simulations of neurofeedback and resting-state fMRI data. The rtQA was implemented as an extension of the open-source OpenNFT software written in Python, MATLAB and C++ for neurofeedback, task-based, and resting-state paradigms. We also developed a general Python library to unify real-time fMRI data processing and neurofeedback applications. Flexible estimation and visualization of rtQA facilitates efficient rtQA of fMRI data and helps the robustness of fMRI acquisitions by means of substantiating decisions about the necessity of the interruption and re-start of the experiment and increasing the confidence in neural estimates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12021-022-09582-7 | DOI Listing |
JAMA Psychiatry
September 2025
School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia.
Importance: Cannabis is the most commonly used illicit drug, with 10% to 30% of regular users developing cannabis use disorder (CUD), a condition linked to altered hippocampal integrity. Evidence suggests high-intensity interval training (HIIT) enhances hippocampal structure and function, with this form of physical exercise potentially mitigating CUD-related cognitive and mental health impairments.
Objective: To determine the impact of a 12-week HIIT intervention on hippocampal integrity (ie, structure, connectivity, biochemistry) compared with 12 weeks of strength and resistance (SR) training in CUD.
Cereb Cortex
August 2025
Section of Brain Function Information, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.
This study aimed to identify brain activity modulations associated with different types of visual tracking using advanced functional magnetic resonance imaging techniques developed by the Human Connectome Project (HCP) consortium. Magnetic resonance imaging data were collected from 27 healthy volunteers using a 3-T scanner. During a single run, participants either fixated on a stationary visual target (fixation block) or tracked a smoothly moving or jumping target (smooth or saccadic tracking blocks), alternating across blocks.
View Article and Find Full Text PDFCereb Cortex
August 2025
Department of Psychology, University of Milano-Bicocca, Milan, Italy.
Semantic composition allows us to construct complex meanings (e.g., "dog house", "house dog") from simpler constituents ("dog", "house").
View Article and Find Full Text PDFCereb Cortex
August 2025
Research Imaging Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, United States.
Statistical Parametric Mapping (SPM) adheres to rigorous methodological standards, including: spatial normalization, inter-subject averaging, voxel-wise contrasts, and coordinate reporting. This rigor ensures that a thematically diverse literature is amenable to meta-analysis. BrainMap is a community database (www.
View Article and Find Full Text PDFCereb Cortex
August 2025
Functional Imaging Laboratory (FIL), Department of Imaging Neuroscience, University College London, 12 Queen Square, London WC1N 3AR, United Kingdom.
This paper marks the 30th anniversary of the Statistical Parametric Mapping (SPM) software and the journal Cerebral Cortex: two modest milestones that mark the inception of cognitive neuroscience. We take this opportunity to reflect on SPM, a generation after its introduction. Each of the authors of this paper-who represent a small selection of the many contributors to SPM-were asked to consider lessons learned, what has gone well, and where there is room for improvement in future development.
View Article and Find Full Text PDF