98%
921
2 minutes
20
Understanding the diffusive transport behavior of volatile organic compounds (VOCs) in near-surface soils is important because soil VOC emissions affect atmospheric conditions and climate. Previous studies have suggested that temperature changes affect the transport behavior; however, the effect of these changes are poorly understood. Indeed, under dynamic temperature conditions, the change in VOC flux is much larger than that expected from the temperature dependency of the diffusion coefficient of VOCs in air. However, the mechanism is not well understood, although water in soil has been considered to play an important role. Here, we present the results of experiments for the upward vertical vapor-phase diffusive transport of two VOCs (benzene and tetrachloroethylene) in sandy soil under sinusoidal temperature variations of 20-30 °C, as well as its numerical representation. The results clarify that the unexpectedly large changes in emission flux can occur as a result of changes in the VOC concentration gradient due to VOC release (volatilization) from/trapping (dissolution) into water, and that such flux changes may occur in various environments. This study suggests the importance of a global evaluation of soil VOC emissions by continuous measurements in various soil environments and/or predictions through numerical simulations with thorough consideration of the role of water in dynamic soil environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8924235 | PMC |
http://dx.doi.org/10.1038/s41598-022-08270-5 | DOI Listing |
Anal Methods
September 2025
Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
This study introduces a new, highly sensitive, and reliable method for detecting and measuring orthophosphate in environmental water samples. This method combines cetyltrimethylammonium bromide (CTAB)-mediated coacervation extraction with digital image-based colorimetry, providing a robust and efficient approach for orthophosphate analysis. In this system, CTAB, a cationic surfactant, serves a dual role as both an ion-pairing agent and an extraction medium.
View Article and Find Full Text PDFNature
September 2025
Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Amino acids (AAs) have a long history of being used as stabilizers for biological media. For example, they are important components in biomedical formulations. The effect of AAs on biological systems is also starting to be appreciated.
View Article and Find Full Text PDFMicrobes Environ
September 2025
Sustainable Process Engineering Center, Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya.
Nitrifying communities in activated sludge play a crucial role in biological nitrogen removal processes in municipal wastewater treatment plants. While extensive research has been conducted in temperate regions, limited information is available on nitrifiers in tropical regions. The present study investigated all currently known nitrifying communities in two full-scale municipal wastewater treatment plants in Malaysia operated under low-dissolved oxygen (DO) (0.
View Article and Find Full Text PDFBMJ Open
September 2025
Primary Care Research Centre, University of Southampton, Southampton, UK.
Objectives: Increasing physical activity and effectively managing stress can positively impact immunity and may reduce the duration of respiratory tract infections (RTIs). As part of a larger trial, participants accessed a digital behavioural change intervention that encouraged physical activity and stress management to reduce RTIs. We aimed to understand the barriers and facilitators to engaging in physical activity and stress reduction.
View Article and Find Full Text PDFBiotechnol Adv
September 2025
Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Bygning 115, 2800 Kgs, Lyngby, Denmark.
Phototrophic microorganisms are gaining prominence for their dual role in wastewater treatment and resource recovery, converting wastewater into valuable bioproducts. However, their effective deployment needs robust modelling frameworks capable of predicting performance across complex, real-world scenarios. Despite significant advances, key challenges hinder the development and application of such models.
View Article and Find Full Text PDF