Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Perfusion and structural imaging play an important role in ischemic stroke. Magnetic resonance fingerprinting (MRF) arterial spin labeling (ASL) is a novel noninvasive method of ASL perfusion that allows simultaneous estimation of cerebral blood flow (CBF), bolus arrival time (BAT), and tissue T map in a single scan of <4 minutes. Here, we evaluated the utility of MRF-ASL in patients with ischemic stroke in terms of detecting hemodynamic and structural damage and predicting neurological deficits and disability.

Methods: A total of 34 patients were scanned on 3T magnetic resonance imaging. MRF-ASL, standard single-delay pseudo-continuous ASL, T-weighted, and diffusion magnetic resonance imaging were performed. Regions of interest of lesion and contralateral normal tissues were manually delineated. CBF (with 2 different compartmental models), BAT, and tissue T parameters were quantified. Cross-sectional linear regression analyses were performed to examine the relationship between MRF-ASL parameters and National Institutes of Health Stroke Scale (NIHSS) and modified Rankin Scale. Receiver operating characteristic analyses were performed to determine the utility of MRF-ASL in the classification of stroke lesion voxels.

Results: MRF-ASL derived parameters revealed a significant difference between stroke lesion and contralateral normal regions of interest, in that lesion regions manifested a lower CBF (<0.001), lower CBF (<0.001), longer BAT (=0.002), and longer T (<0.001) compared with normal regions of interest. NIHSS scores at acute stage revealed a strong association with lesion-normal differences in CBF (β=-0.11, =0.008), CBF (β=-0.16, =0.003), and T (β=0.008, =0.001). MRF-ASL parameters were also predictive of NIHSS score and modified Rankin Scale scale measured at a later stage, although the degree of the associations was weaker. These associations tended to be even stronger when the MRF-ASL data were acquired at the acute/subacute stage. Compared with standard pseudo-continuous ASL, the multiparametric capability of MRF-ASL yielded higher area under curve values in the receiver operating characteristic analyses of stroke voxel classifications.

Conclusions: MRF-ASL may provide a new approach for quantitative hemodynamic and structural imaging in ischemic stroke.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9179092PMC
http://dx.doi.org/10.1161/STROKEAHA.121.037066DOI Listing

Publication Analysis

Top Keywords

structural imaging
8
ischemic stroke
8
stroke magnetic
8
magnetic resonance
8
resonance fingerprinting
8
arterial spin
8
spin labeling
8
simultaneous hemodynamic
4
hemodynamic structural
4
imaging ischemic
4

Similar Publications

Early repolarization pattern with oral liquid nicotine.

BMC Cardiovasc Disord

September 2025

Department of Cardiology II (Electrophysiology), University Hospital Münster, Albert-Schweitzer-Campus 1, Münster, 48149, Germany.

While most sudden cardiac deaths are due to structural heart disease or cardiac ischemia, intoxications are rather rare and often unrecognized. Here we present a case of a 35-year-old patient who trickled cumulative 60 mg of the pure nicotine liquid. This led to cardiac arrest and ventricular fibrillation.

View Article and Find Full Text PDF

Enhancing submandibular gland resection: A retrospective study on the efficacy of the ORBEYE 3D exoscope.

Oral Maxillofac Surg

September 2025

Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Shinmachi 2-5-1, Hirakata-city, Osaka, Japan.

Purpose: For submandibular gland resection, conventional surgery with the naked eye remains the standard. With its excellent automatic focus and high magnification, the ORBEYE 3D exoscope enables precise submandibular gland resection with less stress. Therefore, we aimed to examine the usefulness of the exoscope in submandibular gland resection.

View Article and Find Full Text PDF

Understanding how molecular aggregation influences nonlinear optical properties is essential for advancing organic fluorophores in imaging, sensing, and photonic applications. However, the relationship between the molecular aggregation and the magnitude of nonlinear two-photon absorption cross-section remains underexplored. Here, we systematically investigate the aggregation-dependent two-photon absorption properties of the fluorophore TPAPhCN by tuning the degree of aggregation.

View Article and Find Full Text PDF

Machine Learning-Aided Screening and Design Rule Discovery for LWIR-Transparent Optical Materials.

J Chem Inf Model

September 2025

Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041, United States.

The development of low-cost, high-performance materials with enhanced transparency in the long-wavelength infrared (LWIR) region (800-1250 cm/8-12.5 μm) is essential for advancing thermal imaging and sensing technologies. Traditional LWIR optics rely on costly inorganic materials, limiting their broader deployment.

View Article and Find Full Text PDF

Teres major rupture: case report in a jiu-jitsu athlete.

Acta Ortop Mex

September 2025

Universidade de Ribeirão Preto Campus Guarujá. Guarujá (SP), Brazil.

The rupture of the teres major muscle is a well-known condition in sports activities like baseball, hockey, and tennis. There is no real consensus in the literature regarding treatment, with approaches varying between functional and surgical methods. While functional treatment appears to be a viable option, there is a lack of evidence indicating significant improvement in medial rotation strength after aforementioned treatment.

View Article and Find Full Text PDF