Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

For the early diagnosis of lung cancer, a novel strategy to detect microRNAs encapsulated in exosomes with immunomagnetic isolation was demonstrated for the selective extraction of exo-miRNAs from patient serum. Here, miRNA was captured from lysed exosomes in specially designed capture probe modified magnetic beads, followed by T4 DNA polymerase-mediated in situ formation of chimeric 5'-miRNA-DNA-3' (Target). The poly-(2,2':5',2''-terthiophene-3'-(p-benzoic acid)) (pTBA)-modified electrode harbors Probe-1 DNA that hybridizes to the 5' end of the chimera, followed by hybridization of Probe-2 DNA to the 3' end of the chimera, resulting in the formation of a 20-nucleotide-long dsDNA consensus sequence for p53 protein binding. A bioconjugate composed of p53 and hydrazine assembled on AuNPs (p53-AuNPs-Hyd) recruits the p53 protein to recognize a specific sequence, forming the final sensor probe (pTBA-Probe-1:Target/Probe-2:bioconjugate), where hydrazine functions as an electrocatalyst to generate amperometric signal from the reduction of HO. This sensor has double specificity via selective capture of the target in Probe-1 and p53 recognition, which shows excellent analytical performance, revealing a dynamic range between 100 aM and 10 pM with a detection limit of 92 (±0.1) aM. For practical applications, we prepared a multiplexed array sensor to simultaneously detect four exo-miRNAs (miRNA-21, miRNA-155, miRNA-205, and miRNA-let-7b) up to femtomolar levels from 1.0 mL to 125 μL of cell culture (A549, MCF-7 and BEAS-2B) media and lung cancer patient serum samples, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2022.114149DOI Listing

Publication Analysis

Top Keywords

p53 protein
12
lung cancer
12
array sensor
8
bioconjugate composed
8
composed p53
8
patient serum
8
p53
5
exosomal micrornas
4
micrornas array
4
sensor
4

Similar Publications

NSUN6 Promotes Gastric Cancer Progression by Stabilizing CEBPZ mRNA in a mC-Dependent Manner.

Appl Biochem Biotechnol

September 2025

Operating Room, Shanghai Tianyou Hospital, No.528, Zhennan Road, Putuo District, Shanghai, 200331, China.

Gastric cancer (GC) is a malignant tumor originating from the epithelial cells of the gastric mucosa. The 5-methylcytosine (mC) modification refers to the addition of a methyl group to the fifth carbon atom of cytosine in RNA molecules. This study aimed to investigate the role of NOL1/NOP2/SUN domain (NSUN)6 in GC and its underlying molecular mechanisms.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) is the fourth leading cause of cancer-related death globally. Tumor profiling has revealed actionable gene alterations that guide treatment strategies and enhance survival. Among Hispanics living in Puerto Rico (PRH), GC ranks among the top 10 causes of cancer-related death.

View Article and Find Full Text PDF

Neural tumors represent diverse malignancies with distinct molecular profiles and present particular challenges due to the blood-brain barrier, heterogeneous molecular etiology including epigenetic dysregulation, and the affected organ's critical nature. KCC-07, a selective and blood-brain barrier penetrable MBD2 (methyl CpG binding domain protein 2) inhibitor, can suppress tumor development by inducing p53 signaling, proven only in medulloblastoma. Here we demonstrate KCC-07 treatment's application to other neural tumors.

View Article and Find Full Text PDF

In the event of a large-scale radiological or nuclear emergency, a rapid, high-throughput screening tool will be essential for efficient triage of potentially exposed individuals, optimizing scarce medical resources and ensuring timely care. The objective of this work was to characterize the effects of age and sex on two intracellular lymphocyte protein biomarkers, BAX and p53, for early radiation exposure classification in the human population, using an imaging flow cytometry-based platform for rapid biomarker quantification in whole blood samples. Peripheral blood samples from male and female donors, across three adult age groups (young adult, middle-aged, senior) and a juvenile cohort, were X-irradiated (0-5 Gy), and biomarker expression was quantified at two- and three-days post-exposure.

View Article and Find Full Text PDF

Ovarian cancer remains a major health threat with limited treatment options available. It is characterized by immunosuppressive tumor microenvironment (TME) maintained by tumor-associated macrophages (TAMs) hindering anti-tumor responses and immunotherapy efficacy. Here we show that targeting retinoblastoma protein (Rb) by disruption of its LxCxE cleft pocket causes preferential cell death in Rbhigh M2 polarized or M2-like Rbhigh immunosuppressive TAMs by induction of ER stress, p53 and mitochondria-related cell death pathways.

View Article and Find Full Text PDF