Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

For efficient delivery of messenger (m)RNA, delivery carriers need two major functions: protecting mRNA from nucleases and translocating mRNA from endolysosomes to the cytoplasm. Herein, these two complementary functionalities are integrated into a single polyplex by fine-tuning the catiomer chemical structure and incorporating the endosomal escape modality. The effect of the methylene spacer length on the catiomer side chain is evaluated by comparing poly(l-lysine) (PLL) with a tetramethylene spacer and poly(L-ornithine) (PLO) with a trimethylene spacer. Noteworthily, the nuclease stability of the mRNA/catiomer polyplexes is largely affected by the difference in one methylene group, with PLO/mRNA polyplex showing enhanced stability compared to PLL/mRNA polyplex. To introduce the endosomal escape function, the PLO/mRNA polyplex is wrapped with a charge-conversion polymer (CCP), which is negatively charged at extracellular pH but turns positive at endosomal acidic pH to disrupt the endosomal membrane. Compared to the parent PLO/mRNA polyplex, CCP facilitated the endosomal escape of the polyplex in cultured cells to improve the protein expression efficiency from mRNA by approximately 80-fold. Collectively, this system synergizes the protective effect of PLO against nucleases and the endosomal escape capability of CCP in mRNA delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202100754DOI Listing

Publication Analysis

Top Keywords

endosomal escape
20
plo/mrna polyplex
12
charge-conversion polymer
8
mrna delivery
8
endosomal
7
mrna
6
polyplex
6
escape
5
effective mrna
4
mrna protection
4

Similar Publications

Lipid nanoparticles (LNPs) are widely used in drug delivery due to their low toxicity, excellent biocompatibility, and ability to facilitate endosomal escape. A critical factor influencing the in vivo behavior of LNPs is the formation of a biomolecular corona (BC) on their surface. This layer of biomolecules affects key biological processes such as targeting, absorption, distribution, metabolism, and clearance.

View Article and Find Full Text PDF

Impact of Stimuli-Responsiveness on the mRNA Delivery Efficiency of Low-Generation Dendrimer Nanogels.

Biomacromolecules

September 2025

State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.

Development of efficient and stimuli-responsive gene delivery systems for therapeutic protein expression and immunomodulation remains challenging. Here, we report the synthesis of three types of pH-, reactive oxygen species (ROS)- and glutathione (GSH)-responsive dendrimer nanogels (for short, DNGs-pH, DNGs-ROS, and DNGs-GSH, respectively) a microemulsion method for delivery of messenger RNA (mRNA) and plasmid DNA (pDNA), both encoding enhanced green fluorescent protein (for short, mEGFP and pEGFP), to dendritic cells (DCs). The synthesized DNGs exhibit a nanoscale dimension, high monodispersity, desired colloidal stability, low cytotoxicity, and efficient gene delivery efficiency.

View Article and Find Full Text PDF

Peptides as functional excipients for drug delivery.

Eur J Pharm Biopharm

September 2025

Pharmaceutical Research and Technology Labs., Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan.

Peptides have a wide variety of amino acid compositions, sequences and conformations, which allow high specificity and great functionality. Biodegradable peptides arouse less concern about toxicity and tissue accumulation, while short peptides contribute to easy design and manufacturing, high quality, and low production costs. Thanks to these advantages, peptides can be used as high-functional excipients for drug delivery systems (DDS).

View Article and Find Full Text PDF

Acid-triggered nucleic acid release from gold nanoparticles via Schiff base linkages: In vitro validation of endosomal escape and gene silencing.

Biomater Adv

August 2025

Katsushika Division, Institute of Arts and Sciences, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan; Department of Medical and Robotic Engineering Design, Graduate School of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, J

Gold nanoparticles with brush structures of nucleic acid drugs (Nuc-AuNPs) are prepared by mixing thiol-modified nucleic acid drugs and AuNPs due to the strong affinity of the Au-S bond. However, effectively regulating the intracellular kinetics of nucleic acids remains a challenge in achieving highly efficient nucleic-acid delivery. In this study, we designed new DNA-Schiff-AuNPs.

View Article and Find Full Text PDF

Despite the clinical significance of many nonenveloped viruses, the molecular mechanisms of their internalization and membrane penetration are not well understood. Rotaviruses (RVs) are nonenveloped double-stranded RNA viruses and the leading cause of severe dehydrating diarrhea in infants and young children. We identified fatty acid 2-hydroxylase (encoded by ) in the fatty acid 2-hydroxylation pathway as a proviral gene that supports RV infection.

View Article and Find Full Text PDF