Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To face the challenges of climate change and sustainable food production, it is essential to develop crop genome editing techniques to pinpoint key genes involved in abiotic stress signaling. The identification of those prevailing abscisic acid (ABA) receptors that mediate plant-environment interactions is quite challenging in polyploid plants because of the high number of genes in the PYR/PYL/RCAR ABA receptor family. is a biotechnological crop amenable to genome editing, and given the importance of ABA signaling in coping with drought stress, we initiated the analysis of its 23-member family of ABA receptors through multiplex CRISPR/Cas9-mediated editing. We generated several high-order mutants impaired in and receptors, which showed certain insensitivity to ABA for inhibition of seedling establishment, growth, and development of shoot and lateral roots as well as reduced sensitivity to the PYL1-agonist cyanabactin (CB). However, in these high-order mutants, regulation of transpiration was not affected and was responsive to ABA treatment. This reveals a robust and redundant control of transpiration in this allotetraploid plant that probably reflects its origin from the extreme habitat of central Australia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8909036PMC
http://dx.doi.org/10.3390/cells11050795DOI Listing

Publication Analysis

Top Keywords

aba receptors
12
aba
8
genome editing
8
high-order mutants
8
pyl1- pyl8-like
4
pyl8-like aba
4
receptors
4
receptors play
4
play key
4
key role
4

Similar Publications

Nitrogen (N) is essential for plant growth, but excessive fertilizer use decreases nitrogen use efficiency (NUE) and raises environmental concerns. This study investigated the effect of exogenous abscisic acid (ABA; 50 μM) application on rapeseed (Brassica napus L.) plants under hydroponic conditions with high (7.

View Article and Find Full Text PDF

Pan-Genome-Based Characterization of the PYL Transcription Factor Family in .

Plants (Basel)

August 2025

Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Aral 843300, China.

Abscisic acid (ABA) is a key phytohormone involved in regulating plant growth and responses to environmental stress. As receptors of ABA, pyrabactin resistance 1 (PYR)/PYR1-like (PYL) proteins play a central role in initiating ABA signal transduction. In this study, a total of 30 genes were identified and classified into three sub-families (PYL I-III) in the pan-genome of 17 species, through phylogenetic analysis.

View Article and Find Full Text PDF

Sequential protease deployment under acidic conditions degrades host defense proteins and drives Valsa mali pathogenicity in apple.

Plant Physiol

August 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.

Apple Valsa canker, caused by the ascomycete fungus Valsa mali, is a severe disease threatening apple (Malus domestica) production, particularly in East Asia. The pH at the infection site decreases from 6.0 to around 3.

View Article and Find Full Text PDF

Abscisic acid (ABA) signaling in stomatal guard cells is crucial for plants to cope with abiotic stress condition. Pyrabactin is a synthetic agonist of ABA that has a selective affinity to limited isoforms of ABA receptors. Here we investigated the differential utilization of downstream signaling events in guard cell ABA signaling under specific receptor isoforms taking advantage of pyrabactin affinity.

View Article and Find Full Text PDF