Protocol for generating human immune system mice and hydrodynamic injection to analyze human hematopoiesis .

STAR Protoc

MOE Key Laboratory of Model Animals for Disease Study, MOE Engineering Research Center of Protein and Peptide Medicine, The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Model Animal Research Center, Medical School of Nanjing University, Nanjing 2

Published: March 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human immune system (HIS) mice provide a valuable platform to investigate and modulate human hematopoiesis development . Here, we describe detailed protocols for the construction of HIS mice, modulation of human hematopoiesis using hydrodynamic injection of plasmids encoding cytokines of interest, and flow cytometry analysis of humanization levels and human immune subsets. This approach can be easily applied to screen or verify factors that regulate human hematopoiesis and immune system. For complete details on the use and execution of this protocol, please refer to Cardoso et al. (2021) and Li et al. (2017).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8899045PMC
http://dx.doi.org/10.1016/j.xpro.2022.101217DOI Listing

Publication Analysis

Top Keywords

human hematopoiesis
16
human immune
12
immune system
12
system mice
8
hydrodynamic injection
8
human
7
protocol generating
4
generating human
4
immune
4
mice hydrodynamic
4

Similar Publications

Warfarin is a widely used vitamin K antagonist (VKA) with known pleiotropic effects beyond anticoagulation. Preclinical and case-control evidence suggests that warfarin may affect hematopoiesis, but longitudinal human evidence is lacking. To explore this potential effect, we conducted a post-hoc analysis of participants in the Hokusai-VTE and ENGAGE AF-TIMI 48 trials, which randomized patients to warfarin or the direct oral anticoagulant edoxaban with routine laboratory testing at predefined follow-up visits.

View Article and Find Full Text PDF

Emerging HER2 Targeting Immunotherapy for Cholangiocarcinoma.

Oncol Res

September 2025

Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection & Graduate School of Medical Sciences, Kumamoto University 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.

Cholangiocarcinoma (CCA) is a fatal bile duct malignancy. CCA is intrinsically resistant to standard chemotherapy, responds poorly to it, and has a poor prognosis. Effective treatments for cholangiocarcinoma remain elusive, and a breakthrough in CCA treatment is still awaited.

View Article and Find Full Text PDF

Nanobioreactor detection of space-associated hematopoietic stem and progenitor cell aging.

Cell Stem Cell

September 2025

Sanford Stem Cell Institute Integrated Space Stem Cell Orbital Research (ISSCOR) Center, Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA. Electronic address:

Human hematopoietic stem and progenitor cell (HSPC) fitness declines following exposure to stressors that reduce survival, dormancy, telomere maintenance, and self-renewal, thereby accelerating aging. While previous National Aeronautics and Space Administration (NASA) research revealed immune dysfunction in low-earth orbit (LEO), the impact of spaceflight on human HSPC aging had not been studied. To study HSPC aging, our NASA-supported Integrated Space Stem Cell Orbital Research (ISSCOR) team developed bone marrow niche nanobioreactors with lentiviral bicistronic fluorescent, ubiquitination-based cell-cycle indicator (FUCCI2BL) reporter for real-time HSPC tracking in artificial intelligence (AI)-driven CubeLabs.

View Article and Find Full Text PDF

A single-cell framework identifies functionally and molecularly distinct multipotent progenitors in adult human hematopoiesis.

Cell Rep

September 2025

Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA; Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA

Hematopoietic multipotent progenitors (MPPs) regulate blood cell production to meet the evolving demands of an organism. Adult human MPPs remain ill defined, whereas mouse MPPs are well characterized, with distinct immunophenotypes and lineage potencies. Using multi-omic single-cell analyses and functional assays, we identified distinct human MPPs within Lin-CD34+CD38dim/lo adult bone marrow with unique biomolecular and functional properties.

View Article and Find Full Text PDF

Human length telomeres restrict the regenerative potential of hematopoietic stem cells in mice.

bioRxiv

August 2025

Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

Extremely short telomeres cause bone marrow failure in telomere biology disorder (TBDs) patients. Here, we employed the recently developed 'Telomouse' with human-length telomeres resulting from a single amino acid substitution in the helicase Rtel1 ( ) to determine the effects of the short telomeres on the bone marrow and hematopoiesis. Under homeostatic conditions, Telomice have notably short telomeres but normal hematopoiesis.

View Article and Find Full Text PDF