A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A smartphone-based algorithm comprising cough analysis and patient-reported symptoms identifies acute exacerbations of asthma: a prospective, double blind, diagnostic accuracy study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Early and accurate recognition of asthma exacerbations reduces the duration and risk of hospitalization. Current diagnostic methods depend upon patient recognition of symptoms, expert clinical examination, or measures of lung function. Here, we aimed to develop and test the accuracy of a smartphone-based diagnostic algorithm that analyses five cough events and five patient-reported features (age, fever, acute or productive cough and wheeze) to detect asthma exacerbations. We conducted a double-blind, prospective, diagnostic accuracy study comparing the algorithm with expert clinical opinion and formal lung function testing. One hundred nineteen participants >12 years with a physician-diagnosed history of asthma were recruited from a hospital in Perth, Western Australia: 46 with clinically confirmed asthma exacerbations, 73 with controlled asthma. The groups were similar in median age (54yr versus 60yr, =0.72) and sex (female 76% versus 70%, =0.5). The algorithm's positive percent agreement (PPA) with the expert clinical diagnosis of asthma exacerbations was 89% [95% CI: 76%, 96%]. The negative percent agreement (NPA) was 84% [95% CI: 73%, 91%]. The algorithm's performance for asthma exacerbations diagnosis exceeded its performance as a detector of patient-reported wheeze (sensitivity, 63.7%). Patient-reported wheeze in isolation was an insensitive marker of asthma exacerbations (PPA=53.8%, NPA=49%). Our diagnostic algorithm accurately detected the presence of an asthma exacerbation as a point-of-care test without requiring clinical examination or lung function testing. This method could improve the accuracy of telehealth consultations and might be helpful in Asthma Action Plans and patient-initiated therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02770903.2022.2051546DOI Listing

Publication Analysis

Top Keywords

asthma exacerbations
24
expert clinical
12
lung function
12
asthma
11
diagnostic accuracy
8
accuracy study
8
clinical examination
8
diagnostic algorithm
8
function testing
8
percent agreement
8

Similar Publications