Noncanonical Function of AGO2 Augments T-cell Receptor Signaling in T-cell Prolymphocytic Leukemia.

Cancer Res

Department I of Internal Medicine, Center for Integrated Oncology, Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.

Published: May 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: T-cell prolymphocytic leukemia (T-PLL) is a chemotherapy-refractory T-cell malignancy with limited therapeutic options and a poor prognosis. Current disease concepts implicate TCL1A oncogene-mediated enhanced T-cell receptor (TCR) signaling and aberrant DNA repair as central perturbed pathways. We discovered that recurrent gains on chromosome 8q more frequently involve the argonaute RISC catalytic component 2 (AGO2) gene than the adjacent MYC locus as the affected minimally amplified genomic region. AGO2 has been understood as a protumorigenic key regulator of miRNA (miR) processing. Here, in primary tumor material and cell line models, AGO2 overrepresentation associated (i) with higher disease burden, (ii) with enhanced in vitro viability and growth of leukemic T cells, and (iii) with miR-omes and transcriptomes that highlight altered survival signaling, abrogated cell-cycle control, and defective DNA damage responses. However, AGO2 elicited also immediate, rather non-RNA-mediated, effects in leukemic T cells. Systems of genetically modulated AGO2 revealed that it enhances TCR signaling, particularly at the level of ZAP70, PLCγ1, and LAT kinase phosphoactivation. In global mass spectrometric analyses, AGO2 interacted with a unique set of partners in a TCR-stimulated context, including the TCR kinases LCK and ZAP70, forming membranous protein complexes. Models of their three-dimensional structure also suggested that AGO2 undergoes posttranscriptional modifications by ZAP70. This novel TCR-associated noncanonical function of AGO2 represents, in addition to TCL1A-mediated TCR signal augmentation, another enhancer mechanism of this important deregulated growth pathway in T-PLL. These findings further emphasize TCR signaling intermediates as candidates for therapeutic targeting.

Significance: The identification of AGO2-mediated activation of oncogenic T cells through signal amplifying protein-protein interactions advances the understanding of leukemogenic AGO2 functions and underlines the role of aberrant TCR signaling in T-PLL.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-21-1908DOI Listing

Publication Analysis

Top Keywords

tcr signaling
16
ago2
10
noncanonical function
8
function ago2
8
t-cell receptor
8
t-cell prolymphocytic
8
prolymphocytic leukemia
8
leukemic cells
8
signaling
6
tcr
6

Similar Publications

Pattern and precision: DNA-based mapping of spatial rules for T cell activation.

Nanoscale Horiz

September 2025

Programmable Biomaterials Laboratory, Institute of Materials, Interfaculty Bioengineering Institute, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, 1015, Switzerland.

The nanoscale spatial arrangement of T cell receptor (TCR) ligands critically influences their activation potential in CD8 T cells, yet a comprehensive understanding of the molecular landscape induced by engagement with native peptide-MHC class I (pMHC-I) remains incomplete. Using DNA origami nanomaterials, we precisely organize pMHC-I molecules into defined spatial configurations to systematically investigate the roles of valencies, inter-ligand spacings, geometric patterns, and molecular flexibility in regulating T cell function. We find that reducing the inter-ligand spacing to ∼7.

View Article and Find Full Text PDF

T-cell therapies have proven to be a promising treatment option for cancer patients in recent years, especially in the case of chimeric antigen receptor (CAR)-T cell therapy. However, the therapy is associated with insufficient activation of T cells or poor persistence in the patient's body, which leads to incomplete elimination of cancer cells, recurrence, and genotoxicity. By extracting the splice element of PD-1 pre-mRNA using biology based on CRISPR/dCas13 in this study, our ultimate goal is to overcome the above-mentioned challenges in the future.

View Article and Find Full Text PDF

Background: Although previous studies suggested associations between psoriasis and atopic dermatitis (AD), the directionality and causality of these relationships remain controversial. This study employed bidirectional Mendelian randomization to investigate the potential causal relationships between these two inflammatory skin conditions.

Methods: Genome-wide association statistics were obtained for psoriasis and AD from large-scale consortia and meta-analyses of genome-wide association studies.

View Article and Find Full Text PDF

The skin integrates diverse signals discerned by sensory neurons and immune cells to elicit adaptive responses to a range of stresses. Considering interactions between nervous and immune systems, we examined whether regulatory T (T) cells, which suppress systemic and local inflammation, can modulate activation of peripheral neurons. Acute T cell "loss of function" increased neuronal activation to noxious stimuli independently of their immunosuppressive function.

View Article and Find Full Text PDF

PTPN22-CD45 dual phosphatase retrograde feedback enhances TCR signaling and autoimmunity.

Sci Adv

September 2025

Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA.

Protein tyrosine phosphatase nonreceptor type 22 (PTPN22) is encoded by a gene strongly associated with lupus and other autoimmune diseases. PTPN22 regulates T cell receptor (TCR) signaling through dephosphorylation of the kinases lymphocyte-specific protein tyrosine kinase (LCK) and zeta-chain-associated protein kinase 70 (ZAP70). The regulation of PTPN22 remains poorly understood.

View Article and Find Full Text PDF