Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Hepatocellular carcinoma (HCC) is a highly invasive disease with a high mortality rate. Our previous study found that Chenodeoxycholic acid CDCA) as an endogenous metabolite can enhance the anti-tumor effect. Sorafenib has limited overall efficacy as a first-line agent in HCC, and combined with CDCA may improve its efficacy.

Methods: HepG2 cells and Balb/c nude mice were used respectively for and experiments. Flow cytometry, Western blotting, HE and immunohistochemical staining and immunofluorescence were used to study the effects of CDCA combined with sorafenib on HepG2 cell growth and apoptosis-related proteins. Magnetic bead coupling, protein profiling and magnetic bead immunoprecipitation were used to find the targets of CDCA action. The effect of CDCA on EGFR/Stat3 signaling pathway was further verified by knocking down Stat3 and EGFR. Finally, fluorescence confocal, and molecular docking were used to study the binding site of CDCA to EGFR.

Results: In this study, we found that CDCA enhanced the effect of sorafenib in inhibiting the proliferation, migration and invasion of HepG2 cells. Magnetic bead immunoprecipitation and protein profiling revealed that CDCA may enhance the effect of sorafenib by affecting the EGFR/Stat3 signaling pathway. Further results from and gene knockdown experiments, confocal experiments and molecular docking showed that CDCA enhances the efficacy of sorafenib by binding to the extracellular structural domain of EGFR.

Conclusion: This study reveals the mechanism that CDCA enhances the inhibitory effect of sorafenib on HepG2 cell growth and , providing a potential new combination strategy for the treatment of HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8891169PMC
http://dx.doi.org/10.3389/fonc.2022.836333DOI Listing

Publication Analysis

Top Keywords

hepg2 cell
12
cell growth
12
magnetic bead
12
cdca
10
chenodeoxycholic acid
8
sorafenib inhibiting
8
hepg2 cells
8
sorafenib hepg2
8
protein profiling
8
bead immunoprecipitation
8

Similar Publications

Isolation, Purification, and Preparation of Taxinine-Loaded Liposomes for Improved Anti-Hepatocarcinogenic Activity.

Drug Dev Res

September 2025

Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.

Liver cancer is the fourth most deadly cancer worldwide, but existing treatment options are insufficient, thus highlighting the urgent need for new therapeutic agents. Taxanes, known for their anticancer properties, provide a promising avenue for intervention. In this study, a tetracyclic taxane compound with antitumor activity (taxinine) was extracted and isolated from Taxus chinensis (T.

View Article and Find Full Text PDF

Challenges in cancer treatment lie in the identification and development of novel agents with potent anti-tumor activity. A series of novel dehydroabietylamine-pyrimidine derivatives 3a-3s were designed and synthesized based on the principles of molecular hybridization. The inhibitory activities of the target compounds against the proliferation of four different human cancer cell lines (HepG2, A549, HCT116 and MCF-7) were evaluated.

View Article and Find Full Text PDF

Although citrus essential oils, including lemongrass essential oil, have antibacterial, anti-biofilm, and antioxidant properties, their biological instability and poor water solubility render them unsuitable for industrial usage. Thus, this study aimed to prepare both lemongrass essential oil emulsion (LEO-E) and lemongrass essential oil nanoemulsion (LEO-NE), and evaluate their different bioactivities. Characterization by gas chromatography-mass spectroscopy (GC-MS) and evaluation of antimicrobial, antibiofilm, antioxidant, and anticancer activities were carried out.

View Article and Find Full Text PDF

Background: Recent advancements in cancer therapeutics have catalyzed the development of noninvasive treatment modalities, including the utilization of fluorescent chemotherapeutic agents. These agents offer dual functionality, enabling targeted drug delivery, real-time tumor imaging, and personalized therapy monitoring. Such capabilities are instrumental in the progression toward more precise and effective cancer interventions.

View Article and Find Full Text PDF

Optimizing mucosal vaccination: Exploiting Lactobionic acid-modified chitosan for superior gene delivery systems.

Int J Biol Macromol

September 2025

CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal. Electronic a

The increasing prevalence of respiratory disorders highlights the urgent need for effective mucosal vaccines that elicit targeted immune responses at pathogen entry sites. However, the advancement of mucosal vaccines is limited by challenges in antigen delivery and overcoming mucosal immune tolerance. In this study, we developed a gene delivery platform using chitosan functionalized with lactobionic acid (LA) to enhance targeting of antigen-presenting cells and to form stable DNA polyplexes with high transfection efficiency.

View Article and Find Full Text PDF