A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Concurrent effects of flooding regimes and floodwater quality on sediment properties in a Yangtze River-connected floodplain wetland: Insights from field investigations during 2011-2020. | LitMetric

Concurrent effects of flooding regimes and floodwater quality on sediment properties in a Yangtze River-connected floodplain wetland: Insights from field investigations during 2011-2020.

Sci Total Environ

Key Laboratory of Agro-ecological Processes in Subtropical Region, The Chinese Academy of Sciences, Changsha 410125, China; Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China. Electronic address: yonghon

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Changes in flood regimes, floodwater quality, and macrophyte types may affect sediment characteristics post-flooding. However, few studies have attempted to unravel their complex influences in floodplain wetlands. From 2011 to 2020, the physical and chemical properties of surface layer sediment pre- and post-flooding was investigated through field surveys in the Dongting Lake wetland. Results indicated that the pre-flooding soil total phosphorus (TP) and total nitrogen (TN) exhibited an increasing trend during 2011-2020. Soil TP increased post-flooding relative to that pre-flooding. The changes in TN, sediment organic matter (SOM), sediment moisture content (SMC), and sediment bulk density (SBD) fluctuated over the years. The best-fitting multi-regression model demonstrated that the changes in sediment variables post-flooding showed a parabolic trajectory along the inundation duration (ID), except for SMC. Changes in soil properties post-flooding were negatively correlated with ID for sediment with a low IDs (<148 days). Meanwhile, changes in soil properties post flooding were positively correlated with ID for sediment with a high IDs (>193 days). Changes in SBD and SOM post-flooding were positively influenced by the TP content in the floodwater. These findings indicate that changes in the flooding regime, and water quality generated by anthropogenic disturbances such as the Three Gorges Dam significantly affect sediment properties, and subsequently influence the ecological functions of the Dongting Lake wetland.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.154225DOI Listing

Publication Analysis

Top Keywords

sediment
9
regimes floodwater
8
floodwater quality
8
sediment properties
8
affect sediment
8
dongting lake
8
lake wetland
8
changes sediment
8
changes
6
post-flooding
6

Similar Publications