Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The epidermal growth factor (EGF) receptor (EGFR) controls many aspects of cell physiology. EGF binding to EGFR elicits the membrane recruitment and activation of phosphatidylinositol-3-kinase, leading to Akt phosphorylation and activation. Concomitantly, EGFR is recruited to clathrin-coated pits (CCPs), eventually leading to receptor endocytosis. Previous work uncovered that clathrin, but not receptor endocytosis, is required for EGF-stimulated Akt activation, and that some EGFR signals are enriched in CCPs. Here, we examine how CCPs control EGFR signaling. The signaling adaptor TOM1L1 and the Src-family kinase Fyn are enriched within a subset of CCPs with unique lifetimes and protein composition. Perturbation of TOM1L1 or Fyn impairs EGF-stimulated phosphorylation of Akt2 but not Akt1. EGF stimulation also triggered the TOM1L1- and Fyn-dependent recruitment of the phosphoinositide 5-phosphatase SHIP2 to CCPs. Thus, the recruitment of TOM1L1 and Fyn to a subset of CCPs underlies a role for these structures in the support of EGFR signaling leading to Akt activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8899389PMC
http://dx.doi.org/10.1083/jcb.201808181DOI Listing

Publication Analysis

Top Keywords

recruited clathrin-coated
8
clathrin-coated pits
8
leading akt
8
receptor endocytosis
8
akt activation
8
egfr signaling
8
subset ccps
8
tom1l1 fyn
8
egfr
6
ccps
6

Similar Publications

Clathrin-mediated endocytosis (CME) is an important internalization route for macromolecules, lipids, and membrane receptors in eukaryotic cells. During CME, the plasma membrane invaginates and pinches off forming a clathrin coated vesicle. We previously identified heterogeneity in this process with clathrin coated vesicles forming though multiple routes including simultaneous clathrin accumulation and membrane invagination (constant curvature; CCM) as well as membrane bending after accumulation of flat clathrin (flat to curved; FTC).

View Article and Find Full Text PDF

Clathrin-mediated endocytosis internalizes proteins and lipids from the cell surface. A flexible condensate of initiator proteins catalyzes assembly of clathrin-coated vesicles in diverse organisms. Here we reveal that an endocytic adaptor protein, Epsin1, conditionally stabilizes this network, creating a cargo-dependent endocytic checkpoint.

View Article and Find Full Text PDF

Clathrin-mediated endocytosis depends on complex protein interactions. Eps15 plays a key role through interactions of its three EH domains with Asn-Pro-Phe (NPF) motifs in intrinsically disordered regions (IDRs) of other endocytic proteins. Using nuclear magnetic resonance spectroscopy, we investigate the interaction between Eps15's EH domains and a highly disordered Dab2 fragment (Dab2).

View Article and Find Full Text PDF

The cell surface abundance of many proteins is controlled by clathrin-mediated endocytosis (CME). CME is driven by the assembly of clathrin and other proteins on the inner leaflet of the plasma membrane into clathrin-coated pits (CCPs). Regulation of CCP dynamics allows for control of the function of specific cell surface proteins, impacting a range of cellular outcomes.

View Article and Find Full Text PDF

Clathrin-mediated endocytosis is essential for membrane traffic, impacting a diverse range of cellular processes including cell signaling homeostasis, cell adhesion, and receptor recycling. During endocytosis, invagination of the plasma membrane is coordinated by a network of proteins that recruit and assemble the clathrin coat. Recent work demonstrated that clathrin accessory proteins which arrive early at endocytic sites, such as Eps15 and Fcho2, form phase-separated condensates that recruit downstream machinery, promoting assembly and maturation of clathrin-coated vesicles.

View Article and Find Full Text PDF