Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Substrate stiffness has been indicated as a primary determinant for stem cell fate, being capable of influencing motility, proliferation, and differentiation. Although the effects of stiffness on cardiac differentiation of human-induced pluripotent stem cells (h-iPSCs) have been reported, whether stiffness of polydimethylsiloxane-based substrates could enhance differentiation of h-iPSCs toward heart valve endothelial cells lineage (VECs) or not remains unknown. Herein, we modulated the substrate stiffness to evaluate its effect on the differentiation of h-iPSCs into valve endothelial-like cells (h-iVECs) in vitro and determine the suitable stiffness. The results revealed that VECs-related genes (PECAM1, CDH5, NFATC1, etc.) were significantly increased in h-iVECs obtained from the three substrates compared with h-iPSCs. Gene expression levels and differentiation efficiency were higher in the medium group than in the stiff and soft groups. An increase in substrate stiffness to 2.8 GPa decreased the efficiency of h-iPSCs differentiation into h-iVECs and downregulated VECs specific genes. Through mRNA sequencing, we determined the key genetic markers involved in stiffness guiding the differentiation of cardiac progenitor cells into h-iVECs. Unsupervised hierarchical clustering showed that medium stiffness were more suitable for the differentiation of h-iPSCs into h-iVECs in vitro. Moreover, this process is regulated by the WNT/Calcineurin signaling pathway. Overall, this study demonstrates how stiffness can be used to enhance the h-iVECs differentiation of iPSCs and emphasizes the importance of using substrate stiffness to accomplish a more specific and mature differentiation of h-iVECs for future therapeutic and tissue engineering valve applications. STATEMENT OF SIGNIFICANCE: Several studies have examined the stiffness-induced cell fate from pluripotent stem cells during the stage of mesoderm cell differentiation. This is the first research that rigorously examines the effect of substrate stiffness on human valve endothelial-like cells differentiation from cardiac progenitor cells. We found that the medium stiffness can increase the differentiation efficiency of h-iVECs from 40% to about 60%, and this process was regulated by the WNT/CaN signaling pathway through the activation of WNT5a. Substrate stiffness not only increases the differentiation efficiency of h-iVECs, but also improves its cellular functions such as low-density lipoprotein uptake and NO release. This study emphasizes the importance of using substrate stiffness to accomplish a more specific and mature differentiation of h-iVECs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2022.02.032DOI Listing

Publication Analysis

Top Keywords

substrate stiffness
32
differentiation
16
stiffness
14
pluripotent stem
12
stem cells
12
differentiation h-ipscs
12
differentiation efficiency
12
differentiation h-ivecs
12
h-ivecs
10
cells
9

Similar Publications

New insights to B cell tolerance involving the mechanosensitive ion channel Piezo1.

BMB Rep

September 2025

Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Institute for Immunology and Immunological Diseases, Yonsei Uni

B cell tolerance is critical for preventing autoimmunity, yet the mechanisms by which B cells discriminate self from non-self antigens remain incompletely understood. While early findings emphasize the role of classical antigen-mediated BCR signaling strength by varying antigen formats, emerging evidence highlights the importance of mechanical cues during antigen recognition. This review explores how mechanosensitive ion channels, particularly Piezo1, contribute to B cell activation and tolerance by integrating physical forces at the immune synapse.

View Article and Find Full Text PDF

Senescent cell accumulation has been implicated in aging and fibrotic disease, which are both characterized by increased tissue stiffness. However, the direct connection between tissue mechanics and senescence induction remains disputed in the literature. Thus, this work investigates the influence of hydrogel stiffness and viscoelasticity in promoting fibroblast senescence both in combination with genotoxic stress and independently.

View Article and Find Full Text PDF

Mechanotransduction plays a pivotal role in shaping cellular behavior including migration, differentiation, and proliferation. To investigate this mechanism more accurately further, this study came up with a novel elastomeric substrate with a stiffness gradient using a sugar-based replica molding technique combined with a two-layer PDMS system. The efficient water solubility of candy allows easy release, creating a smooth substrate.

View Article and Find Full Text PDF

The initiation of endometriotic lesions is not well understood or characterized because endometriosis is typically diagnosed at an advanced stage. Endometriotic lesions are most often found on pelvic tissues and organs, especially the ovaries. To investigate the role of tissue tropism on ovarian endometrioma initiation, we adapted a well-characterized polyacrylamide microarray system to investigate the role of tissue-specific extracellular matrix and adhesion motifs on endometriotic cell attachment, morphology, and size.

View Article and Find Full Text PDF

This study investigates bioelectric stimulation's role in tissue regeneration by enhancing the piezoelectric properties of tissue-engineered grafts using annealed poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) scaffolds. Annealing at temperatures of 80°C, 100°C, 120°C, and 140°C is assessed for its impact on material properties and physiological utility. Analytical techniques such as Differential Scanning Calorimetry (DSC), Fourier-Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD) reveal increased crystallinity with higher annealing temperatures, peaking in β-phase content and crystallinity at 140°C.

View Article and Find Full Text PDF