Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite advances in chemotherapeutic interventions for the treatment of malaria, there is a continuing need for the development of new antimalarial agents. Previous studies indicated that co-administration of chloroquine with antioxidants such as the iron chelator deferoxamine (DFO) prevented the development of persistent cognitive damage in surrogate models of cerebral malaria. The work described herein reports the syntheses and antimalarial activities of covalent conjugates of both natural (siderophores) and artificial iron chelators, namely DFO, ferricrocin and ICL-670, with antimalarial 1,2,4-trioxolanes (ozonides). All of the synthesized conjugates had potent antimalarial activities against the in vitro cultures of drug resistant and drug sensitive strains of Plasmodium falciparum. The work described herein provides the basis for future development of covalent combination of iron chelators and antimalarial chemotherapeutic agents for the treatment of cerebral malaria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9433463PMC
http://dx.doi.org/10.1007/s10534-022-00375-8DOI Listing

Publication Analysis

Top Keywords

cerebral malaria
8
work described
8
antimalarial activities
8
iron chelators
8
antimalarial
5
synthesis antimalarial
4
antimalarial activity
4
activity amide
4
amide ester
4
ester conjugates
4

Similar Publications

Sequestration of Plasmodium falciparum-infected erythrocytes (IE) in the microvasculature is a major virulence determinant. While the sequestration of mature stage parasites (trophozoite and schizonts) to vascular endothelium is well established, the conditions that promote ring-stage IE sequestration is less understood. Here, we observed in ring-stage parasites that febrile exposure increased transcript levels of several exported parasite genes involved in the trafficking of the P.

View Article and Find Full Text PDF

This case details a male patient in his late 50s weighing 90 kg who traveled to Burkina Faso, Africa, for approximately 1 month. He developed fever, headache, and generalized myalgia 3 days after returning to Chongqing, China. The interval from the emergence of the patient's symptoms to the diagnosis of severe falciparum malaria and the commencement of artesunate treatment was 9 days.

View Article and Find Full Text PDF

Malaria is a potentially life-threatening parasitic disease caused by a protozoal infection via Plasmodium species, transmitted by a carrier female Anopheles mosquito. Cerebral malaria is typically caused by Plasmodium falciparum and is known as a fatal neurological complication of malaria. This systematic review and meta-analysis was performed due to limited research on the comparison of artemether and quinine for the treatment of cerebral malaria in children.

View Article and Find Full Text PDF

Cerebral malaria (CM), a life-threatening consequence of Plasmodium falciparum infection, is associated with a high fatality rate and long-term brain impairment in survivors. Despite advances in malaria treatment, effective therapies to mitigate the severe neurological consequences of CM remain limited. Consequently, novel antimalarial drugs with different mechanisms or neuroprotective advantages are urgently required.

View Article and Find Full Text PDF