A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The structure-activity relationship of aromatic compounds in advanced oxidation processes:a review. | LitMetric

The structure-activity relationship of aromatic compounds in advanced oxidation processes:a review.

Chemosphere

Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; National Basic Public Science Data Center, Chinese Academy of Sciences, Beijing, 100190, China. Electronic address:

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Advanced oxidation processes (AOPs) are widely used as efficient technologies to treat highly toxic and harmful substances in wastewater. Taking the most representative aromatic compounds (monosubstituted benzenes, substituted phenols and heterocyclic compounds) as examples, this paper firstly introduces their structures and the structural descriptors studied in AOPs before, and the influence of structural differences in AOPs with different reactive oxygen species (ROS) on the degradation rate was discussed in detail. The structure-activity relationship of pollutants has been previously analyzed through quantitative structure-activity relationship (QSAR) model, in which ROS is a very important influencing factor. When electrophilic oxidative species attacks pollutants, aromatic compounds with electron donating groups are more favorable for degradation than aromatic compounds with electron donating groups. While nucleophilic oxidative species comes to the opposite conclusion. The choice of advanced oxidation processes, the synergistic effect of various active oxygen species and the used catalysts will also change the degradation mechanism. This makes the structure-dependent activity relationship uncertain, and different conclusions are obtained under the influence of various experimental factors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.134071DOI Listing

Publication Analysis

Top Keywords

aromatic compounds
16
structure-activity relationship
12
advanced oxidation
12
oxidation processes
8
oxygen species
8
oxidative species
8
compounds electron
8
electron donating
8
donating groups
8
compounds
5

Similar Publications