A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Regularized RKHS-Based Subspace Learning for Motor Imagery Classification. | LitMetric

Regularized RKHS-Based Subspace Learning for Motor Imagery Classification.

Entropy (Basel)

School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China.

Published: January 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Brain-computer interface (BCI) technology allows people with disabilities to communicate with the physical environment. One of the most promising signals is the non-invasive electroencephalogram (EEG) signal. However, due to the non-stationary nature of EEGs, a subject's signal may change over time, which poses a challenge for models that work across time. Recently, domain adaptive learning (DAL) has shown its superior performance in various classification tasks. In this paper, we propose a regularized reproducing kernel Hilbert space (RKHS) subspace learning algorithm with K-nearest neighbors (KNNs) as a classifier for the task of motion imagery signal classification. First, we reformulate the framework of RKHS subspace learning with a rigorous mathematical inference. Secondly, since the commonly used maximum mean difference (MMD) criterion measures the distribution variance based on the mean value only and ignores the local information of the distribution, a regularization term of source domain linear discriminant analysis (SLDA) is proposed for the first time, which reduces the variance of similar data and increases the variance of dissimilar data to optimize the distribution of source domain data. Finally, the RKHS subspace framework was constructed sparsely considering the sensitivity of the BCI data. We test the proposed algorithm in this paper, first on four standard datasets, and the experimental results show that the other baseline algorithms improve the average accuracy by 2-9% after adding SLDA. In the motion imagery classification experiments, the average accuracy of our algorithm is 3% higher than the other algorithms, demonstrating the adaptability and effectiveness of the proposed algorithm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870989PMC
http://dx.doi.org/10.3390/e24020195DOI Listing

Publication Analysis

Top Keywords

subspace learning
12
rkhs subspace
12
imagery classification
8
motion imagery
8
source domain
8
proposed algorithm
8
average accuracy
8
regularized rkhs-based
4
subspace
4
rkhs-based subspace
4

Similar Publications