Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Inducing the feeling of fullness via the regulation of satiety hormones presents an effective method for reducing excess energy intake and, in turn, preventing the development of obesity. In this study, the ability of blue whiting soluble protein hydrolysates (BWSPHs) and simulated gastrointestinal digested (SGID) BWSPHs, to modulate the secretion and/or production of satiety hormones, such as glucagon-like peptide-1 (GLP-1), cholecystokinin (CCK) and peptide YY (PYY), was assessed in murine enteroendocrine STC-1 cells. All BWSPHs (BW-SPH-A to BW-SPH-F) (1.0% / dw) increased active GLP-1 secretion and proglucagon production in STC-1 cells compared to the basal control (Krebs-Ringer buffer) ( < 0.05). The signaling pathway activated for GLP-1 secretion was also assessed. A significant increase in intracellular calcium levels was observed after incubation with all BWSPHs ( < 0.05) compared with the control, although none of the BWSPHs altered intracellular cyclic adenosine monophosphate (cAMP) concentrations. The secretagogue effect of the leading hydrolysate was diminished after SGID. Neither pre- nor post-SGID hydrolysates affected epithelial barrier integrity or stimulated interleukin (IL)-6 secretion in differentiated Caco-2/HT-29MTX co-cultured cells. These results suggest a role for BWSPH-derived peptides in satiety activity; however, these peptides may need to be protected by some means to avoid loss of activity during gastrointestinal transit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8877066PMC
http://dx.doi.org/10.3390/md20020112DOI Listing

Publication Analysis

Top Keywords

glp-1 secretion
12
stc-1 cells
12
blue whiting
8
protein hydrolysates
8
secretion proglucagon
8
proglucagon production
8
production stc-1
8
satiety hormones
8
secretion
5
bwsphs
5

Similar Publications

Unlabelled: Despite stimulating glucagon secretion, the mechanisms by which protein ingestion lowers glucose excursions remain unclear. We investigated this using the triple stable isotope glucose tracer technique to measure postprandial glucose fluxes. Eleven healthy adults completed three trials, ingesting 25 g glucose (25G; 100 kcal), 50 g glucose (50G; 200 kcal), or 25 g glucose plus 25 g whey protein (25WG; 200 kcal).

View Article and Find Full Text PDF

Creating effective treatments for type 2 diabetes mellitus (T2DM) remains a critical global health challenge. This study investigates the antidiabetic mechanisms of subsp. B-53 ( B-53) in T2DM mice.

View Article and Find Full Text PDF

Obesity is a global health crisis strongly linked to increased risk of type 2 diabetes, cardiovascular diseases, and other metabolic disorders. Glucagon-like peptide-1 (GLP-1) has emerged as an effective macromolecular therapeutic agent for weight management. This study addressed obesity management from three distinct perspectives: enhancing drug dispersion and bioavailability through a novel drug delivery device, extending drug half-life by developing sustained-release formulations, and sustaining the weight loss through implementation of structured dietary protocols.

View Article and Find Full Text PDF

Aims/hypothesis: Unimolecular peptides targeting the receptors for glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and glucagon (GCG) have been shown to improve glycaemic management in both mice and humans. Yet the identity of the downstream signalling events mediated by these peptides remain to be elucidated. Here, we aimed to assess the mechanisms by which a validated peptide triagonist for GLP-1/GIP/GCG receptors (IUB447) stimulates insulin secretion in murine pancreatic islets.

View Article and Find Full Text PDF

Dipeptidyl-peptidase (DPP)-IV inhibition by penultimate N-terminus Pro-containing peptides is a promising strategy for Type 2 diabetes (T2D) management, as it prevents the degradation of incretin hormones (DPP-IV substrates) like glucagon-like peptide-1 (GLP-1), thereby prolonging their half-life. However, the stability and bio-accessibility of these peptides are crucial to their efficacy in orally administered therapeutics. We previously identified LPCL and TPFLPDE peptides from tilapia viscera by-products hydrolysates, which exhibited significant DPP-IV inhibition in vitro and in situ while effectively preserving active GLP-1 levels after 2 h treatment in STC-1 cells under basal glucose conditions.

View Article and Find Full Text PDF