Genetically Encoded Biosensors for the Quantitative Analysis of Auxin Dynamics in Plant Cells.

Methods Mol Biol

Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, Germany.

Published: February 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plants, as sessile organisms, possess complex and intertwined signaling networks to react and adapt their behavior toward different internal and external stimuli. Due to this high level of complexity, the implementation of quantitative molecular tools in planta remains challenging. Synthetic biology as an ever-growing interdisciplinary field applies basic engineering principles in life sciences. A plethora of synthetic switches, circuits, and even higher order networks has been implemented in different organisms, such as bacteria and mammalian cells, and facilitates the study of signaling and metabolic pathways. However, the application of such tools in plants lags behind, and thus only a few genetically encoded biosensors and switches have been engineered toward the quantitative investigation of plant signaling. Here, we present a protocol for the quantitative analysis of auxin signaling in Arabidopsis thaliana protoplasts. We implemented genetically encoded, ratiometric, degradation-based luminescent biosensors and applied them for studying auxin perception dynamics. For this, we utilized three different Aux/IAAs as sensor modules and analyzed their degradation behavior in response to auxin. Our experimental approach requires simple hardware and experimental reagents and can thus be implemented in every plant-related or cell culture laboratory. The system allows for the analysis of auxin perception and signaling aspects on various levels and can be easily expanded to other hormones, as for example strigolactones. In addition, the modular sensor design enables the implementation of sensor modules in a straightforward and time-saving approach.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-1791-5_11DOI Listing

Publication Analysis

Top Keywords

genetically encoded
12
analysis auxin
12
encoded biosensors
8
quantitative analysis
8
auxin perception
8
sensor modules
8
auxin
5
signaling
5
quantitative
4
biosensors quantitative
4

Similar Publications

Recent Advances in Gene Therapy for Hemophilia.

Clin Appl Thromb Hemost

September 2025

Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.

Hemophilia, an X-linked monogenic disorder, arises from mutations in the or genes, which encode clotting factor VIII (FVIII) or clotting factor IX (FIX), respectively. As a prominent hereditary coagulation disorder, hemophilia is clinically manifested by spontaneous hemorrhagic episodes. Severe cases may progress to complications such as stroke and arthropathy, significantly compromising patients' quality of life.

View Article and Find Full Text PDF

Characterization of the pesticidal crystal toxin protein Cry11Aa from Bacillus thuringiensis serovar israelensis VCRC B646 for mosquito larvae control.

Biotechnol Lett

September 2025

Unit of Microbiology and Immunology, Vector Control Research Centre, Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Puducherry, 605006, India.

Effective mosquito control is essential for reducing the transmission of vector-borne diseases. This study focuses on the comprehensive characterization of mosquitocidal toxins produced by Bacillus thuringiensis serovar israelensis (Bti) VCRC B646 and the associated insecticidal genes. The bacterium was cultured, and the spore-crystal complex was purified to identify the mosquitocidal proteins.

View Article and Find Full Text PDF

Introduction: Mutations in SORL1, encoding the sorting receptor Sortilin-related receptor with A-type repeats (SORLA), are found in individuals with Alzheimer's disease (AD). We studied SORLA, carrying a mutation in its ligand binding domain, to learn more about receptor functions relevant for human brain health.

Methods: We investigated consequences of SORLA expression in induced pluripotent stem cell (iPSC)-derived human neurons and microglia, using unbiased proteome screens and functional cell assays.

View Article and Find Full Text PDF

Live-cell imaging of intracellular proteins enables real-time observation of protein dynamics under near-physiological conditions, providing pivotal insights for both fundamental life science research and medical applications. However, due to limitations such as poor probe permeability and cytotoxicity associated with conventional antibody-based or genetically encoded labeling techniques, live-cell imaging remains a significant challenging. To address these limitations, here in this study, we developed and rigorously validated a novel aptamer-based fluorescent probe for real-time imaging of NEK9 kinase in living cells.

View Article and Find Full Text PDF

modulates presynaptic Ca1.3 Ca channel function in inner hair cells (IHCs) and is required for indefatigable synaptic sound encoding. Biallelic variants in are associated with non-syndromic hearing loss (DFNB93).

View Article and Find Full Text PDF