SPARC, a Novel Regulator of Vascular Cell Function in Pulmonary Hypertension.

Circulation

Excellence Cluster Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (C.V., I.V-Ö., M.W., S.H., C-Y.W., F.K., S.K., A.P., M.G., O.P., M.B., M.H., J.W., F.C.W., K.M., K.S., H.G., K.T., A.Sydykov, A.G., W.S., F.G., H.A.G., R.T.S.,

Published: March 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Pulmonary hypertension (PH) is a life-threatening disease, characterized by excessive pulmonary vascular remodeling, leading to elevated pulmonary arterial pressure and right heart hypertrophy. PH can be caused by chronic hypoxia, leading to hyper-proliferation of pulmonary arterial smooth muscle cells (PASMCs) and apoptosis-resistant pulmonary microvascular endothelial cells (PMVECs). On reexposure to normoxia, chronic hypoxia-induced PH in mice is reversible. In this study, the authors aim to identify novel candidate genes involved in pulmonary vascular remodeling specifically in the pulmonary vasculature.

Methods: After microarray analysis, the authors assessed the role of SPARC (secreted protein acidic and rich in cysteine) in PH using lung tissue from idiopathic pulmonary arterial hypertension (IPAH) patients, as well as from chronically hypoxic mice. In vitro studies were conducted in primary human PASMCs and PMVECs. In vivo function of SPARC was proven in chronic hypoxia-induced PH in mice by using an adeno-associated virus-mediated knockdown approach.

Results: C57BL/6J mice were exposed to normoxia, chronic hypoxia, or chronic hypoxia with subsequent reexposure to normoxia for different time points. Microarray analysis of the pulmonary vascular compartment after laser microdissection identified as one of the genes downregulated at all reoxygenation time points investigated. Intriguingly, SPARC was vice versa upregulated in lungs during development of hypoxia-induced PH in mice as well as in IPAH, although SPARC plasma levels were not elevated in PH. TGF-β1 (transforming growth factor β1) or HIF2A (hypoxia-inducible factor 2A) signaling pathways induced SPARC expression in human PASMCs. In loss of function studies, silencing enhanced apoptosis and reduced proliferation. In gain of function studies, elevated SPARC levels induced PASMCs, but not PMVECs, proliferation. Coculture and conditioned medium experiments revealed that PMVECs-secreted SPARC acts as a paracrine factor triggering PASMCs proliferation. Contrary to the authors' expectations, in vivo congenital knockout mice were not protected from hypoxia-induced PH, most probably because of counter-regulatory proproliferative signaling. However, adeno-associated virus-mediated knockdown in adult mice significantly improved hemodynamic and cardiac function in PH mice.

Conclusions: This study provides evidence for the involvement of SPARC in the pathogenesis of human PH and chronic hypoxia-induced PH in mice, most likely by affecting vascular cell function.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.121.057001DOI Listing

Publication Analysis

Top Keywords

hypoxia-induced mice
16
pulmonary vascular
12
pulmonary arterial
12
chronic hypoxia
12
chronic hypoxia-induced
12
pulmonary
10
sparc
9
vascular cell
8
cell function
8
pulmonary hypertension
8

Similar Publications

Sorting nexin 3 promotes ischemic retinopathy through RIP1- and RIP3-mediated myeloid cell necroptosis and mitochondrial fission.

Proc Natl Acad Sci U S A

September 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug De

Proliferative retinopathy is a leading cause of irreversible blindness in humans; however, the molecular mechanisms behind the immune cell-mediated retinal angiogenesis remain poorly elucidated. Here, using single-cell RNA sequencing in an oxygen-induced retinopathy (OIR) model, we identified an enrichment of sorting nexin (SNX)-related pathways, with SNX3, a member of the SNX family that is involved in endosomal sorting and trafficking, being significantly upregulated in the myeloid cell subpopulations of OIR retinas. Immunostaining showed that SNX3 expression is markedly increased in the retinal microglia/macrophages of mice with OIR, which is mainly located within and around the neovascular tufts.

View Article and Find Full Text PDF

Hyaluronic acid and polyvinyl alcohol-based radioresponsive hydrogel for combined radioimmunotherapy of breast cancer bone metastasis.

Carbohydr Polym

November 2025

State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China. Electronic address:

Combining radiotherapy with immunotherapy holds promise for treating solid tumors and metastases, but challenges persist, including hypoxia-induced immunosuppression and immune-related adverse events from off-target toxicity. To address this, we engineered an in-situ formed hydrogel by crosslinking hyaluronic acid and polyvinyl alcohol with a reactive oxygen species (ROS)-responsive linker (3-aminophenylboronic acid). This hydrogel leverages radiotherapy-induced ROS within the tumor microenvironment to trigger localized release of nitric oxide (NO) and the toll-like receptor 7/8 (TLR7/8) agonist R848.

View Article and Find Full Text PDF

The Hypoxia-Induced Chromatin Reader ZMYND8 Drives HIF-Dependent Metabolic Rewiring in Breast Cancer.

J Biol Chem

September 2025

Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India. Electronic address:

Breast cancer, a leading cause of mortality, exhibits significant heterogeneity across molecular subtypes, with tumor hypoxia contributing to poor therapeutic outcomes. The present study investigates the role of ZMYND8, a hypoxia-responsive epigenetic factor, in regulating carbohydrate metabolism in concert with HIF1α in breast cancer. In adherent cells as well as in 3D MCTS, ZMYND8 expression is elevated under hypoxic conditions.

View Article and Find Full Text PDF

IL4I1 attenuates myocardial infarction by inhibiting macrophage ferroptosis via the I3P/AHR/NRF2 signaling pathway.

Int Immunopharmacol

September 2025

Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei

Backgrounds: As an immunometabolic enzyme, Interleukin-4 induced gene 1 (IL4I1) catalyzes aromatic amino acid degradation to modulate immune functions. Our prior work demonstrated that IL4I1 promotes anti-inflammatory macrophage polarization, thereby attenuating atherosclerosis progression-a key pathological precursor to myocardial infarction (MI). Despite this established role in plaque development, the functional significance of this immunometabolic enzyme in post-MI cardiac injury remains unexplored.

View Article and Find Full Text PDF

Extracellular vesicles-delivered circDB promotes ischemic muscle repair through the miR-34a/USP7/Notch1 signaling pathway.

Regen Ther

December 2025

Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, PR China.

Introduction: The incidence of lower limb ischemic diseases has been rising steadily in recent years, often leading to severe outcomes such as limb amputation. Given the limited availability of effective treatments, there is a critical need for novel therapeutic strategies. This study explores the reparative role and underlying mechanisms of extracellular vesicles derived from human umbilical cord mesenchymal stem cells (UMSC-EVs) in promoting ischemic hindlimb recovery through the delivery of circular RNA circDB.

View Article and Find Full Text PDF