Lineage Tracing Methods to Study Mammary Epithelial Hierarchies In Vivo.

Methods Mol Biol

Department of Genetics and Developmental Biology, Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France.

Published: February 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lineage tracing is now considered the gold standard approach to study cellular hierarchies and cell fate in vivo (McKenna and Gagnon, Development 146:dev169730, 2019; Kretzschmar and Watt, Cell 148:33-45, 2012). This type of clonal analysis consists of genetically labeling defined cells and following their destiny and progeny in vivo and in situ.Here we will describe different existing in vivo systems to clonally trace targeted cells and will discuss their respective advantages and inconveniences; we will then provide stepwise instructions for setting up and evaluate lineage tracing experiments, listing the most common downstream analyses and read-out assays.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-2193-6_7DOI Listing

Publication Analysis

Top Keywords

lineage tracing
12
tracing methods
4
methods study
4
study mammary
4
mammary epithelial
4
epithelial hierarchies
4
vivo
4
hierarchies vivo
4
vivo lineage
4
tracing considered
4

Similar Publications

Uncovering new lineages in the Sunda pangolin () with museum mitogenomics.

Biol Lett

September 2025

Department of Vertebrate Zoology, Division of Mammals, Smithsonian National Museum of Natural History, Washington, DC, USA.

Accurately identifying evolutionarily significant units (ESUs) is crucial for conservation planning, especially for species like pangolins threatened by overhunting and habitat loss. ESUs help categorize different pangolin populations, aiding in understanding their genetic diversity and distribution, which is vital for targeted conservation efforts. This research generated mitochondrial genomes from historical museum specimens of Sunda pangolins () from underrepresented locations, uncovering a new evolutionary lineage from the Mentawai Islands that diverged from Indochina and west Sundaland populations around 760 000 years ago.

View Article and Find Full Text PDF

Adrenal lipoma formation via PI(3,4,5)P/AKT-dependent transdifferentiation of adrenocortical cells into adipocytes.

Proc Natl Acad Sci U S A

September 2025

Department of Biochemical Pathophysiology, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.

Adrenal lipomas are benign tumors containing ectopic adipose tissue in the adrenal gland, an organ that normally lacks both adipocytes and their progenitors. The origin of this ectopic fat remains enigmatic, and the absence of a genetic animal model has hindered its investigation. Phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P], a key signaling lipid that regulates cellular growth and differentiation, is tightly regulated by the lipid phosphatases PTEN (phosphatase and tensin homolog) and SHIP2 (SH2-containing inositol phosphatase 2).

View Article and Find Full Text PDF

Single-cell transcriptome combined with genetic tracing reveals a roadmap of fibrosis formation during proliferative vitreoretinopathy.

Proc Natl Acad Sci U S A

September 2025

Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Ocular Trauma, Laboratory of Molecular Ophthalmology, Tianjin Medical Univer

Ocular fibrosis, a severe consequence of excessive retinal wound healing, can lead to vision loss following retinal injury. Proliferative vitreoretinopathy (PVR), a common form of ocular fibrosis, is a major cause of blindness, characterized by the formation of extensive fibrous proliferative membranes. Understanding the cellular origins of PVR-associated fibroblasts (PAFs) is essential to decipher the mechanisms of ocular wound healing.

View Article and Find Full Text PDF

Within most tissues, the extracellular microenvironment provides mechanical cues that guide cell fate and function. Changes in the extracellular matrix such as aberrant deposition, densification and increased crosslinking are hallmarks of late-stage fibrotic diseases that often lead to organ dysfunction. Biomaterials have been widely used to mimic the mechanical properties of the fibrotic matrix and study pathophysiologic cell function.

View Article and Find Full Text PDF

The global burden of kidney disease displays marked sexual dimorphism. Lineage tracing and single-cell RNA-sequencing revealed that starting from puberty, estrogen signaling in female mice supports self-renewal and differentiation of renal progenitors to increase filtration capacity, reducing sensitivity to glomerular injury compared with that of males. This phenomenon accelerated as female kidneys adapted to the workload of pregnancy.

View Article and Find Full Text PDF