98%
921
2 minutes
20
Cell-level quantitative features of retinal ganglion cells (GCs) are potentially important biomarkers for improved diagnosis and treatment monitoring of neurodegenerative diseases such as glaucoma, Parkinson's disease, and Alzheimer's disease. Yet, due to limited resolution, individual GCs cannot be visualized by commonly used ophthalmic imaging systems, including optical coherence tomography (OCT), and assessment is limited to gross layer thickness analysis. Adaptive optics OCT (AO-OCT) enables imaging of individual retinal GCs. We present an automated segmentation of GC layer (GCL) somas from AO-OCT volumes based on weakly supervised deep learning (named WeakGCSeg), which effectively utilizes weak annotations in the training process. Experimental results show that WeakGCSeg is on par with or superior to human experts and is superior to other state-of-the-art networks. The automated quantitative features of individual GCLs show an increase in structure-function correlation in glaucoma subjects compared to using thickness measures from OCT images. Our results suggest that by automatic quantification of GC morphology, WeakGCSeg can potentially alleviate a major bottleneck in using AO-OCT for vision research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8846574 | PMC |
http://dx.doi.org/10.1364/optica.418274 | DOI Listing |
Comput Biol Med
September 2025
University of Strasbourg, CNRS, INSERM, ICube, UMR7357, 300 boulevard Sébastien Brant, Illkirch, 67412, France. Electronic address:
Surgical workflow recognition (SWR) is associated with numerous potential applications to improve patient safety and surgeon performance. So far, SWR studies have mainly focused on endoscopic procedures due to the scarcity of publicly available open surgery video datasets. In this article, we propose for the first time to work on an open orthopaedic surgery called minimally invasive plate osteosynthesis (MIPO) for distal radius fractures (DRFs).
View Article and Find Full Text PDFBackground: Cancer morbidity disproportionately affects patients in low- and middle-income countries (LMICs), where timely and accurate tumor profiling is often nonexistent. Immunohistochemistry-based assessment of estrogen receptor (ER) status, a critical step to guide use of endocrine therapy (ET) in breast cancer, is often delayed or unavailable. As a result, ET is often prescribed empirically, leading to ineffective and toxic treatment for ER-negative patients.
View Article and Find Full Text PDFSignal Transduct Target Ther
September 2025
Department of Biomedical Engineering, Emory University, Atlanta, GA, USA.
Accurate prognosis prediction is essential for guiding cancer treatment and improving patient outcomes. While recent studies have demonstrated the potential of histopathological images in survival analysis, existing models are typically developed in a cancer-specific manner, lack extensive external validation, and often rely on molecular data that are not routinely available in clinical practice. To address these limitations, we present PROGPATH, a unified model capable of integrating histopathological image features with routinely collected clinical variables to achieve pancancer prognosis prediction.
View Article and Find Full Text PDFQuant Imaging Med Surg
September 2025
Information and Communication Technologies, Asian Institute of Technology, Pathumthani, Thailand.
Background: The accurate assessment of thyroid nodules, which are increasingly common with age and lifestyle factors, is essential for early malignancy detection. Ultrasound imaging, the primary diagnostic tool for this purpose, holds promise when paired with deep learning. However, challenges persist with small datasets, where conventional data augmentation can introduce noise and obscure essential diagnostic features.
View Article and Find Full Text PDFBMC Bioinformatics
September 2025
Computer Science Department, KU Leuven, Celestijnenlaan 200A, 3001, Leuven, Belgium.
Background: Knowledge discovery in scientific literature is hindered by the increasing volume of publications and the scarcity of extensive annotated data. To tackle the challenge of information overload, it is essential to employ automated methods for knowledge extraction and processing. Finding the right balance between the level of supervision and the effectiveness of models poses a significant challenge.
View Article and Find Full Text PDF