98%
921
2 minutes
20
This paper reports the development of a low-cost (< US$ 0.03 per device) immunosensor based on gold-modified screen-printed carbon electrodes (SPCEs). As a proof of concept, the immunosensor was tested for a fast and sensitive determination of S proteins from both SARS-CoV and SARS-CoV-2, by a single disposable device. Gold nanoparticles were electrochemically deposited via direct reduction of gold ions on the electrode using amperometry. Capture antibodies from spike (S) protein were covalently immobilized on carboxylic groups of self-assembled monolayers (SAM) of mercaptoacetic acid (MAA) attached to the gold nanoparticles. Label-free detection of S proteins from both SARS-CoV and SARS-CoV-2 was performed with electrochemical impedance spectroscopy (EIS). The immunosensor fabricated with 9 s gold deposition had a high performance in terms of selectivity, sensitivity, and low limit of detection (LOD) (3.16 pmol L), thus permitting the direct determination of the target proteins in spiked saliva samples. The complete analysis can be carried out within 35 min using a simple one-step assay protocol with small sample volumes (10 µL). With such features, the immunoplatform presented here can be deployed for mass testing in point-of-care settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8853172 | PMC |
http://dx.doi.org/10.1007/s00216-022-03956-1 | DOI Listing |
Langmuir
September 2025
Centre for Biomedical Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India.
The study addresses the critical issue of sepsis diagnosis, a life-threatening condition triggered by the body's immune response to infection that leads to mortality. Current diagnostic methods rely on the time-consuming assessment of multiple biomarkers by a series of tests, leading to delayed treatment. Here, we report a platform for developing a point-of-care (POC) device utilizing electrochemical immunosensors for the dual and rapid detection of sepsis biomarkers: Procalcitonin (PCT), Interleukin-6 (IL-6), and C-reactive protein (CRP) as host markers and lipopolysaccharide (LPS) as a pathogen marker.
View Article and Find Full Text PDFBioelectrochemistry
August 2025
Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, Guangdong 516081, China. Electronic address:
Human epidermal growth factor receptor-2 (HER-2), a key biomarker in breast cancer, is critical for early diagnosis and prognosis evaluation. In this work, a label-free electrochemical immunosensor was developed for biomarker HER-2 detection based on PtSnCoNi hierarchical dendritic alloyed nanowires (PtSnCoNi HDNWs). These nanowires were synthesized via a co-reduction-triggered anisotropic growth strategy in oleylamine.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China; Center of Self-Propelled Nanotechnologies, Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, 215123, PR China
Background: Of the mycotoxins, aflatoxin is the most significant. The detection of aflatoxin B1 (AFB1) is crucial for ensuring food safety, as this highly carcinogenic toxin readily contaminates crops such as grains and nuts, and timely detection can effectively prevent associated health risks. The selection of luminophores is of paramount importance in the detection of ECL (electrochemiluminescence).
View Article and Find Full Text PDFMikrochim Acta
September 2025
College of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China.
An advanced electrochemical immunosensor platform was designed for the precise quantification of cortisol. The sensor design integrates graphene oxide-silicon carbide (GO-SiC) nanocomposites onto a glassy carbon electrode (GCE). Denatured bovine serum albumin (d-BSA) and an anti-cortisol antibody were immobilized on the GO-SiC/GCE surface as part of the immunosensor's design.
View Article and Find Full Text PDFBioelectrochemistry
August 2025
Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT-03225 Vilnius, Lithuania; Department of Nanotechnology, State Research Institute Center for Physical and Technological Sciences, Sauletekio Ave. 3, LT-10257 Vilni
The emergence of SARS-CoV-2 has posed significant global health challenges. The nucleocapsid protein (N-protein) is a structural part of the SARS-CoV-2 virus and an important immunogenic target of specific antibodies, which are developed in the organism during the infection by this virus. Artificially designed specific (monoclonal and polyclonal) antibodies are also used for therapeutic and bioanalytical purposes, therefore, the assessment and characterization of newly designed antibodies is an important analytical issue.
View Article and Find Full Text PDF