A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Comprehensive Detoxification Mechanism Assessment of Red Imported Fire Ant () against Indoxacarb. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The red imported fire ant is one of the deadliest invasive ant species that threatens the world by disrupting biodiversity, important functions within a natural ecosystem, and community structure. They are responsible for huge economic losses in the infested countries every year. Synthetic insecticides, especially indoxacarb, have been broadly used to control for many years. However, the biochemical response of to indoxacarb remains largely undiscovered. Here, we used the sublethal doses of indoxacarb on the collected from the eight different cities of Southern China. The alteration in the transcriptome profile of following sublethal dosages of indoxacarb was characterized using high-throughput RNA-seq technology. We created 2 libraries, with 50.93 million and 47.44 million clean reads for indoxacarb treatment and control, respectively. A total of 2018 unigenes were regulated after insecticide treatment. Results indicated that a total of 158 differentially expressed genes (DEGs) were identified in the indoxacarb-treated group, of which 100 were significantly upregulated and 58 were downregulated, mostly belonging to the detoxification enzymes, such as AChE, CarE, and GSTs. Furthermore, results showed that most of these DEGs were found in several KEGG pathways, including steroid biosynthesis, other drug metabolizing enzymes, glycerolipid metabolism, chemical carcinogenesis, drug-metabolizing cytochrome P450, glutathione metabolism, glycerophospholipid metabolism, glycolysis/gluconeogenesis, and metabolism of xenobiotics. Together, these findings indicated that indoxacarb causes significant alteration in the transcriptome profile and signaling pathways of , providing a foundation for further molecular inquiry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839056PMC
http://dx.doi.org/10.3390/molecules27030870DOI Listing

Publication Analysis

Top Keywords

red imported
8
imported fire
8
fire ant
8
alteration transcriptome
8
transcriptome profile
8
indoxacarb
7
comprehensive detoxification
4
detoxification mechanism
4
mechanism assessment
4
assessment red
4

Similar Publications