Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The antibiotic mycelial residue (AMR) generated from cephalosporin C production is a hazardous organic waste, which is usually disposed of by landfilling that causes potential secondary environmental pollution. AMR combustion can be an effective method to treat AMR. In order to develop clean combustion technologies for safe disposal and energy recovery from various AMRs, the emission characteristics of NO and SO from AMR combustion were studied experimentally in this work. It was found that the fuel-N is constituted by 85% protein nitrogen and 15% inorganic nitrogen, and the fuel-S by 78% inorganic sulfur and 22% organic sulfur. Nitrogen oxide emissions mainly occur at the volatile combustion stage when the temperature rises to 400 °C, while the primary sulfur oxide emission appears at the char combustion stage above 400 °C. Increasing the combustion temperature and airflow cause higher NO emissions. High moisture content in AMR can significantly reduce the NO emission by lowering the combustion temperature and generating more reducing gases such as CO. For the SO emission, the combustion temperature (700 to 900 °C), airflow and AMR water content do not seem to exhibit obvious effects. The presence of CaO significantly inhibits SO emission, especially for the SO produced during the AMR char combustion because of the good control effect on the direct emission of inorganic SO. Employing air/fuel staging technologies in combination with in-situ desulfurization by calcium oxide/salts added in the combustor with operation temperatures lower than 900 °C should be a potential technology for the clean disposal of AMRs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8835707PMC
http://dx.doi.org/10.3390/ijerph19031581DOI Listing

Publication Analysis

Top Keywords

combustion temperature
12
combustion
10
emission characteristics
8
antibiotic mycelial
8
mycelial residue
8
amr combustion
8
combustion stage
8
400 °c
8
char combustion
8
900 °c
8

Similar Publications

Submicron metal-bearing aerosols from an industrial hub of the North China Plain.

J Hazard Mater

September 2025

Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan. Electronic address:

Particulate matter emitted from heavy industries is a major source of atmospheric metals in the North China Plain (NCP). In this study, submicron particles (0.1-1.

View Article and Find Full Text PDF

The pyrolysis of flue-cured tobacco stalks (TS) faces challenges such as low bio-oil value and utilization efficiency. Existing studies have overlooked the anatomical heterogeneity of tobacco stalks, thereby limiting the directional regulation of high-value components, such as nicotine and phenolic compounds. This study divides TS into the husk (TSH), xylem (TSX), and pith (TSP), and investigates their physicochemical properties, pyrolysis behavior (through TGA and fixed-bed pyrolysis experiments), and interactions.

View Article and Find Full Text PDF

Activation of peroxymonosulfate by Fenton-conditioned sludge-derived biochar for efficient degradation and detoxification of sulfamethoxazole: Reactive oxygen species dominated process.

Environ Res

September 2025

School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China. Electronic address: ho

The activation of peroxymonosulfate (PMS) by biochar has shown promising potential for the efficient degradation and detoxification of antibiotics in wastewater. However, the underlying mechanisms are not fully understood. In this study, Fenton-conditioned sludge-derived biochar (FSBC) was prepared by microwave pyrolysis to activate PMS for the efficient degradation and detoxification of sulfamethoxazole (SMX).

View Article and Find Full Text PDF

Study on Permeability and Flow Characteristics of Composite Thermosensitive Hydrogel and Its Fire Prevention and Extinguishment Performance.

ACS Omega

September 2025

State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology, Xuzhou, Jiangsu 221116, People's Republic of China.

This study focuses on the issues of poor fluidity, low penetration into residual coal, and suboptimal inhibition of coal spontaneous combustion associated with traditional coal mine gel fire retardants. The permeability and flow characteristics of a sodium alginate-based composite thermosensitive hydrogel, as well as its fire prevention and extinguishment performance, were investigated. The findings suggest that the thermosensitive hydrogel behaves as a pseudoplastic fluid at 40 °C and a yield-pseudoplastic fluid at 65 °C, exhibiting shear-thinning behavior with increasing shear rate.

View Article and Find Full Text PDF

The synergistic effect of various ions with optical properties is an important method to regulate the Er ion upconversion luminescence process. However, the energy processes between them are complicated and difficult to separate, and it is challenging to clarify the results of each process when multiple ions are co-doped. Herein, a series of NaYF:Er were synthesized by the low-temperature combustion method, and the luminescence color of Er ions was modulated by doping Yb ions and Tm ions.

View Article and Find Full Text PDF