Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Prediction of cardiovascular disease (CVD) is important in clinical practice. Machine learning (ML) may offer an improved alternative to current CVD risk stratification in individual patients. We aim to identify important predictors and compare ML models with traditional models according to their prediction performance in a large long-term follow-up cohort.

Methods: The Atherosclerosis Risk in Communities (ARIC) study was designed to study the progression of subclinical disease to cardiovascular events over a 25-year follow-up period. All phenotypic variables at visit 1 were obtained. All-cause death, CVD, and coronary heart disease were the outcomes for analysis. The ML framework involved variable selection using the random survival forest (RSF) method, model building, and 5-fold cross-validation. Model performance was evaluated by discrimination using the Harrell concordance index (C-index), accuracy using the Brier score (BS), and interpretability using the number of variables in the model.

Results: Of the 14,842 participants in ARIC, the average age was 54.2 years, with 45.2% male and 26.2% Black participants. Thirty-eight unique variables were selected in the RSF top 20 importance ranking of all 6 outcomes. Aging, hypertension, glucose metabolism, renal function, coagulation, adiposity, and sodium retention dominated the predictions of all outcomes. The ML models outperformed the regression models and established risk scores with a higher C-index, lower BS, and varied interpretability.

Conclusions: The ML framework is useful for identifying important predictors of CVD and for developing models with robust performance compared with existing risk models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cjca.2022.02.008DOI Listing

Publication Analysis

Top Keywords

cardiovascular disease
8
machine learning
8
models
6
deep phenotyping
4
phenotyping prediction
4
prediction long-term
4
long-term cardiovascular
4
disease
4
disease optimized
4
optimized machine
4

Similar Publications

Cardiovascular diseases (CVDs) remain a leading cause of death, particularly in developing countries, where their incidence continues to rise. Traditional CVD diagnostic methods are often time-consuming and inconvenient, necessitating more efficient alternatives. Rapid and accurate measurement of cardiac biomarkers released into body fluids is critical for early detection, timely intervention, and improved patient outcomes.

View Article and Find Full Text PDF

BackgroundAlzheimer's disease (AD) is the most common neurodegenerative disorder. While AD diagnosis traditionally relies on clinical criteria, recent trends favor a precise biological definition. Existing biomarkers efficiently detect AD pathology but inadequately reflect the extent of cognitive impairment or disease heterogeneity.

View Article and Find Full Text PDF

Colorectal cancer ranks among the most prevalent and lethal malignant tumors globally. Historically, the incidence of colorectal cancer in China has been lower than that in developed European and American countries; however, recent trends indicate a rising incidence due to changes in dietary patterns and lifestyle. Lipids serve critical roles in human physiology, such as energy provision, cell membrane formation, signaling molecule function, and hormone synthesis.

View Article and Find Full Text PDF

It is claimed that polygenic risk scores will transform disease prevention, but a typical polygenic risk score for a common disease only detects 11% of affected individuals at a 5% false positive rate. This level of screening performance is not useful. Claims to the contrary are either due to incorrect interpretation of the data or other influences.

View Article and Find Full Text PDF

Importance: Janus kinase (JAK) inhibitors are highly effective medications for several immune-mediated inflammatory diseases (IMIDs). However, safety concerns have led to regulatory restrictions.

Objective: To compare the risk of adverse events with JAK inhibitors vs tumor necrosis factor (TNF) antagonists in patients with IMIDs in head-to-head comparative effectiveness studies.

View Article and Find Full Text PDF