98%
921
2 minutes
20
We investigated the effect of L. extract on endurance exercise capacity (EEC). EEC is the ability to exercise continuously and recover quickly, even when tired. contains antioxidants that contribute beneficial effects on the body. We separated groups of nonexercise (CON), exercise control (Ex-CON), branched-chain amino acid (BCAA) intake, and water extract (CLW) intake (Ex-CLW). EEC increased on the 28th day of BCAA and CLW intake. Both treatment groups exhibited decreased lactate levels with increased levels of nonesterified fatty acids and muscular glycogen compared with the Ex-CON group. Also, the Ex-CLW group possessed higher intramuscular antioxidant enzyme activities (catalase, superoxide dismutase, and glutathione peroxidase) than the Ex-CON group. The expression of PGC-1, NRF, and Tfam, which are factors related to mitochondrial biogenesis, increased in the Ex-CLW group. Results suggest that CLW intake elevated EEC by increasing intramuscular mitochondrial biogenesis through suppressing the accumulation of fatigue substances and increasing fat consumption, and antioxidant enzyme activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/jmf.2021.K.0096 | DOI Listing |
Physiol Plant
September 2025
Department of Plant Physiology, Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.
Several genes in the mitochondria of angiosperms are interrupted by introns, and their posttranscriptional excision involves numerous nucleus-encoded auxiliary factors. Most of these factors are of eukaryotic origin, among them members of the pentatricopeptide-repeat (PPR) family of RNA-binding proteins. This family divides into the PLS and P classes, with PLS-class proteins typically participating in C-to-U mRNA editing and P-class members contributing to transcript stabilization and intron splicing.
View Article and Find Full Text PDFCurr Biol
September 2025
Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, F-75015 Paris, France. Electronic address:
Maintaining organelle identity and function relies on endomembrane system specialization and plasticity. A recent study uncovers endolysosomes as an alternative site of melanin production when melanosome biogenesis is impaired, revealing unexpected functional flexibility within the endolysosomal system.
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China-Singapore Belt and Road Joint Laboratory on Infection Research and Drug Development, National Medical Center for Infectious Diseases, Collaborative Innovation Cen
Macrophages play crucial roles in the progression of liver diseases. Increasing studies have shown that mesenchymal stem cells (MSCs) and their extracellular vesicles (MSC-EVs) could reshape the liver immune microenvironment by regulating the function and phenotype of macrophages, thereby exerting a therapeutic effect on liver diseases. Mitochondria, apart from being the central hub of energy metabolism, also finely regulate macrophage-mediated innate immune responses by modulating reactive oxygen species levels, cell polarization, and cell death.
View Article and Find Full Text PDFJCI Insight
September 2025
Division of Cardiovascular Medicine, Department of Medicine.
Aortic valve stenosis is a progressive and increasingly prevalent disease in older adults, with no approved pharmacologic therapies to prevent or slow its progression. Although genetic risk factors have been identified, the contribution of epigenetic regulation remains poorly understood. Here, we demonstrated that histone deacetylase 3 (HDAC3) maintains aortic valve structure by suppressing mitochondrial biogenesis and preserving extracellular matrix integrity in valvular interstitial fibroblasts.
View Article and Find Full Text PDFHistol Histopathol
September 2025
Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
Brazilin, a natural homoisoflavonoid, is the primary bioactive ingredient derived from the bark and heartwood of L. It has been proven to exhibit multiple biological activities and therapeutic potential in chronic degenerative diseases, fibrotic disorders, inflammatory diseases, and cancers. However, whether it is involved in regulating the pathological process of acute kidney injury (AKI) is not fully understood.
View Article and Find Full Text PDF