Structural differences and adsorption behaviour of alkaline metals doped zinc oxide nanoparticles.

Sci Rep

Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, Miskolc-Egyetemváros, 3515, Hungary.

Published: February 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanotechnology plays a vital role in all the scientific fields including environmental research due to their surface: volume ratio compared to bulk materials. Recent studies prove their effectiveness as pollutant removal and remediation practices. Zinc oxide (ZnO) nanoparticles a multifunctional material with distinct properties and their doped counterparts were widely being studied in different fields of science. However, its application in environmental waste treatment is starting to gain attention due to its low cost and high productivity. Heavy metal pollution is one of the major pollutants affecting aquatic and terrestrial life forms. Pollution in water bodies has also raised alarming concerns in the past decades. Most of the heavy metals are essential elements in trace amounts and omnipresent in the environment, causing toxicity for living organisms, for instance, nickel. In our work, we analysed the prospect of selective removal of nickel ions by different alkaline metals (K, Rb, and Cs) doped zinc oxide nanoparticles fabricated by different treatment methods (as-prepared and heat-treated). We found morphological variations from flower like to rod like owing to the alkaline cations of  the dopants. In addition, the crystal structure and its different fractions presented amorphous content of the fabricated samples increased from 2 to 10 wt% with respect to the atomic radius of dopant in as-prepared samples and not present in heat-treated samples. We report, how the structure and the sample composition directly affected their adsorption behaviour towards Nickel ions in aqueous solutions based on the micro and nano zincite ratio of the ZnO particles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8831499PMC
http://dx.doi.org/10.1038/s41598-022-06092-zDOI Listing

Publication Analysis

Top Keywords

zinc oxide
12
adsorption behaviour
8
alkaline metals
8
doped zinc
8
oxide nanoparticles
8
nickel ions
8
structural differences
4
differences adsorption
4
behaviour alkaline
4
metals doped
4

Similar Publications

Titanium dioxide nanoparticles as a promising tool for efficient separation of trace DNA via phosphate-mediated desorption.

Mikrochim Acta

September 2025

Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.

We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.

View Article and Find Full Text PDF

The post-weaning period is stressful for pigs due to changes in their environment and diet. The occurrence of diarrhea at this stage is high. Growth promoters such as antibiotics and zinc oxide (ZnO) have been used to not only reduce post-weaning diarrhea but also improve growth performance of weaning pigs.

View Article and Find Full Text PDF

The objective of this study was to evaluate ruminal and postruminal apparent absorption of Cu, Mn, and Zn with rations containing 2 different concentrations of sulfate Co, Mn, and Zn supplements in nonlactating, nonpregnant Holstein cows. Four multiparous cows with ruminal and duodenal cannulas were used in a double 2 × 2 crossover design. Cows were assigned to the following treatments: (1) mineral supplement providing concentrations of Co, Mn, and Zn at 0.

View Article and Find Full Text PDF

In pig production, weaning is a critical period where piglets face several environmental stressors. This transition leads to a significant growth reduction and can result in digestive disorders, including diarrhea. To formulate a feed that meets zinc (Zn) and copper (Cu) requirements during the weaning period while minimizing their release into the environment, it became evident that a more bioavailable micro-mineral supplement is necessary.

View Article and Find Full Text PDF

Infected wounds remain a major clinical challenge due to bacterial invasion, which disrupts the natural healing cascade through excessive reactive oxygen species (ROS) generation, severe vascular damage, and persistent inflammation. Inspired by the catechol-rich adhesive domains of mussel foot proteins, we developed an extracellular matrix (ECM)-mimetic polyethylene glycol (PEG) hydrogel incorporating polydopamine (PDA)-functionalized zinc oxide nanoparticles (ZnONPs) for infected wound therapy. The amino acid-functionalized PEG hydrogel reproduces ECM-like properties to facilitate cell migration and efficient exudate management; however, its lack of intrinsic antimicrobial activity limits therapeutic efficacy.

View Article and Find Full Text PDF