Better NOT together: single-cell transcriptomic landscape of leaf tissues.

Plant Physiol

Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-090, São Paulo, Brazil.

Published: February 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8825450PMC
http://dx.doi.org/10.1093/plphys/kiab562DOI Listing

Publication Analysis

Top Keywords

better single-cell
4
single-cell transcriptomic
4
transcriptomic landscape
4
landscape leaf
4
leaf tissues
4
better
1
transcriptomic
1
landscape
1
leaf
1
tissues
1

Similar Publications

B cells play a critical role in tumor immunity, with their presence associated with improved prognosis in various cancers, including endometrial cancer (EC). However, the nature of the B cell response within the tumor microenvironment (TME) remains incompletely understood. In this study, we conducted single-cell analyses of B cells and CD4+ T cells in the TME of EC.

View Article and Find Full Text PDF

What makes the human brain special? Human neurons, glia cells, and cortical circuits have been shown to be significantly different from those of other species, including mammals. This has led to a massive effort by the neuroscience community to directly study these differences in a multimodal approach. The studies conducted include single-cell and network recordings of human tissue samples, single-cell transcriptomics, and morphological analysis of the distinct cells to better understand the underlying differences from the cellular to the systems level.

View Article and Find Full Text PDF

Introduction: Childhood acute lymphoblastic leukemia (cALL), the most common pediatric hematologic malignancy, arises primarily from B-cell origin and is strongly associated with immune dysfunction. This article integrated single-cell and bulk transcriptomic data to identify key B-cell subsets and cALL-related molecules as biomarkers.

Methods: Single-cell RNA sequencing (scRNA-seq) Data from 2 pre-B high hyperdiploid (HHD) ALL patients and 3 healthy pediatric bone marrow samples (GSE132509) were utilized for cell clustering using the Seurat package.

View Article and Find Full Text PDF

Single-cell RNA sequencing (scRNA-seq) has emerged as a transformative tool for decoding plant development, particularly in elucidating xylem differentiation. By capturing transcriptomic changes at single-cell resolution, scRNA-seq enables reconstruction of developmental trajectories across diverse plant tissues. In this review, we summarize recent advances in the application of scRNA-seq to study both primary and secondary xylem development in monocots and eudicots.

View Article and Find Full Text PDF

Alterations in RNA methylation may affect the initiation and development of Alzheimer's disease. However, the exact nature of the relationship between RNA methylation and Alzheimer's disease remains unclear. In this study, RNA methylation levels were analyzed by bulk transcriptomic and single-cell RNA sequencing.

View Article and Find Full Text PDF