98%
921
2 minutes
20
Early stages of speciation in plants might involve genetic incompatibilities between plastid and nuclear genomes, leading to inter-lineage hybrid breakdown due to the disruption between co-adapted plastid and nuclear genes encoding subunits of the same plastid protein complexes. We tested this hypothesis in Silene nutans, a gynodioecious Caryophyllaceae, where four distinct genetic lineages exhibited strong reproductive isolation among each other, resulting in chlorotic or variegated hybrids. By sequencing the whole gene content of the four plastomes through gene capture, and a large part of the nuclear genes encoding plastid subunits from RNAseq data, we searched for non-synonymous substitutions fixed in each lineage on both genomes. Lineages of S. nutans exhibited a high level of dN/dS ratios for plastid and nuclear genes encoding most plastid complexes, with a strong pattern of coevolution for genes encoding the subunits of ribosome and cytochrome b6/f that could explain the chlorosis of hybrids. Overall, relaxation of selection due to past bottlenecks and positive selection have driven the diversity pattern observed in S. nutans plastid complexes, leading to plastid-nuclear incompatibilities. We discuss the possible role of gynodioecy in the evolutionary dynamics of the plastomes through linked selection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ympev.2022.107436 | DOI Listing |
Clin Appl Thromb Hemost
September 2025
Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
Hemophilia, an X-linked monogenic disorder, arises from mutations in the or genes, which encode clotting factor VIII (FVIII) or clotting factor IX (FIX), respectively. As a prominent hereditary coagulation disorder, hemophilia is clinically manifested by spontaneous hemorrhagic episodes. Severe cases may progress to complications such as stroke and arthropathy, significantly compromising patients' quality of life.
View Article and Find Full Text PDFBiotechnol Lett
September 2025
Unit of Microbiology and Immunology, Vector Control Research Centre, Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Puducherry, 605006, India.
Effective mosquito control is essential for reducing the transmission of vector-borne diseases. This study focuses on the comprehensive characterization of mosquitocidal toxins produced by Bacillus thuringiensis serovar israelensis (Bti) VCRC B646 and the associated insecticidal genes. The bacterium was cultured, and the spore-crystal complex was purified to identify the mosquitocidal proteins.
View Article and Find Full Text PDFJ Appl Microbiol
September 2025
Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan.
Aims: This study aims to investigate the genomic profile of a multidrug-resistant Escherichia coli strain, 160-11H1, co-carrying an extended-spectrum β-lactamase (ESBL) and the plasmid-mediated mobile colistin resistance gene, mcr-5.
Methods And Results: The entire genome of the strain was sequenced using Illumina MiSeq and Oxford Nanopore platforms, and de novo assembly was performed using Unicycler. The genome size was 5 031,330 bp and comprised 5 140 coding sequences.
Pest Manag Sci
September 2025
College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.
Background: Peroxisomes are essential for the metabolism of very long-chain fatty acids (VLCFAs). Their biogenesis requires peroxins encoded by the PEX genes. While the significance of PEX14 has been established in the major rice pest the brown planthopper (Nilaparvata lugens), the role of PEX16 as a peroxisome biogenesis initiator remains uncharacterized in this pest.
View Article and Find Full Text PDFMicrobiol Resour Announc
September 2025
Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France.
We report the complete genome sequence of strain MNA2.1, isolated from coastal sediments of the Berre lagoon, France. The genome consists of a 3,866,286 bp circular chromosome and a megaplasmid of 715,144 bp.
View Article and Find Full Text PDF