Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Whitefly inflicts both direct and indirect losses to cotton crop. Whitefly resistant cotton germplasm is a high priority and considered among the best possible solutions to mitigate this issue. In this study, we evaluated cotton leaf curl disease (CLCuD) resistant cotton line Mac7 under whitefly stress. Furthermore, we utilized the already available transcriptome data of Mac7 concerning whitefly stress to elucidate associated mechanisms and identify functionally important genes in cotton. In transcriptomic data analysis, differentially expressed genes (DEGs) were found involved in complex relay pathways, activated on whitefly exposure. The response implicates signalling through resistance genes (R-genes), MAPK, ROS, VQs or RLKs, transcription factors, which leads to the activation of defence responses including, Camessengers, phytohormonal cross-talk, gossypol, flavonoids, PhasiRNA and susceptibility genes (S-genes). The qRT-PCR assay of 10 functionally important genes also showed their involvement in differential responses at 24 and 48 h post whitefly infestation. Briefly, our study helps in understanding the resistant nature of Mac7 under whitefly stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2022.146200DOI Listing

Publication Analysis

Top Keywords

whitefly stress
12
cotton mac7
8
whitefly
8
resistant cotton
8
mac7 whitefly
8
functionally genes
8
cotton
6
genes
5
analysis tetraploid
4
tetraploid cotton
4

Similar Publications

Knockdown of Clavesin family genes NlClvs1l, NlClvs1t, and NlClvs2l in Nilaparvata lugens reveals their potential as novel targets for pest control strategies.

Pestic Biochem Physiol

November 2025

Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, School of Life Sciences, China Jiliang University, Hangzhou 310018, China. Electronic a

The brown planthopper (BPH) Nilaparvata lugens is one of the most destructive pests of rice, and its management has primarily relied on chemical insecticides. Currently, the chemical management of BPH is facing challenges due to the development of pesticide resistance. RNA interference (RNAi) provides attractive alternative to chemical insecticides, provided that suitable target genes are identified.

View Article and Find Full Text PDF

Host-microbe synergy in pesticide resilience: Rhodococcus-driven fitness compensation in chlorpyrifos-stressed Binodoxys communis.

Pestic Biochem Physiol

November 2025

Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricu

Chlorpyrifos (CPF), a widely used organophosphate insecticide in cotton cultivation for controlling Aphis gossypii, has Binodoxys communis as the primary parasitic natural enemy of A. gossypii. This study evaluated the impact of two sub-lethal CPF concentrations (LC10 and LC30) on key biological parameters across two generations, transcriptomic responses, and symbiotic bacterial communities in B.

View Article and Find Full Text PDF

Background: Mealybugs are major pests that cause sap loss and can significantly reduce the quality and market value of durian fruits. Early detection is essential for effective pest management. This study explores the impact of mealybug infestation on volatile emissions and evaluates the application of a low-cost electronic nose (E-nose) system for early infestation detection and ripeness monitoring.

View Article and Find Full Text PDF

The divalent cation, Magnesium (Mg2+), is an essential mineral element for plant growth and development. Magnesium transporter (MGT) plays a vital role in maintaining Mg2 + homeostasis within plant cells. Although extensive research has been conducted in several crop species, no comprehensive study has yet been carried out on the MGT gene family in soybean (Glycine max L.

View Article and Find Full Text PDF

Broad bean is one of the most important leguminous crops worldwide. However, its productivity is greatly affected by the infestation of and (Hemiptera: Aphididae). The main objective of the current study was to identify the most susceptible phenological stages of the broad bean variety (Histal) against black aphids' herbivory.

View Article and Find Full Text PDF