A macrophage-hepatocyte glucocorticoid receptor axis coordinates fasting ketogenesis.

Cell Metab

Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Metabolic Control, Technical University Munich, Munich 80333, Germany; G

Published: March 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fasting metabolism and immunity are tightly linked; however, it is largely unknown how immune cells contribute to metabolic homeostasis during fasting in healthy subjects. Here, we combined cell-type-resolved genomics and computational approaches to map crosstalk between hepatocytes and liver macrophages during fasting. We identified the glucocorticoid receptor (GR) as a key driver of fasting-induced reprogramming of the macrophage secretome including fasting-suppressed cytokines and showed that lack of macrophage GR impaired induction of ketogenesis during fasting as well as endotoxemia. Mechanistically, macrophage GR suppressed the expression of tumor necrosis factor (TNF) and promoted nuclear translocation of hepatocyte GR to activate a fat oxidation/ketogenesis-related gene program, cooperatively induced by GR and peroxisome proliferator-activated receptor alpha (PPARα) in hepatocytes. Together, our results demonstrate how resident liver macrophages directly influence ketogenesis in hepatocytes, thereby also outlining a strategy by which the immune system can set the metabolic tone during inflammatory disease and infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmet.2022.01.004DOI Listing

Publication Analysis

Top Keywords

glucocorticoid receptor
8
ketogenesis fasting
8
liver macrophages
8
fasting
5
macrophage-hepatocyte glucocorticoid
4
receptor axis
4
axis coordinates
4
coordinates fasting
4
fasting ketogenesis
4
fasting metabolism
4

Similar Publications

SLC7A11 encodes the glutamate-cystine exchanger xCT, which is a key regulator of intracellular antioxidant capacity and extracellular glutamate levels. We have identified SLC7A11 as a direct target of the glucocorticoid receptor (GR). The GR agonist dexamethasone represses SLC7A11 expression in multiple cell types, from epithelial cells to astrocytes.

View Article and Find Full Text PDF

Osteoporosis is an increasing concern in the aging population worldwide, culminating in increased economic concerns and diminished quality of life. Similarly, disturbances of lipid metabolism and adipocytes accumulate more and more in western societies and need solutions. Adipocytes have recently attracted much interest in relation to their endocrine products, one of which is adiponectin, normally associated with beneficial effects on cardiovascular health, inflammation, and cancer.

View Article and Find Full Text PDF

Activation of glucocorticoid receptors facilitates ex vivo high-frequency network oscillations in the anterior cingulate cortex.

Neuroscience

September 2025

Research Group "Synapto-Oscillopathies", Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany; Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.

Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, releasing corticosterone (CORT), which binds to glucocorticoid (GR) and mineralocorticoid (MR) receptors in the brain. While stress influences behaviorally relevant network oscillations in limbic regions such as the hippocampus, amygdala, and prefrontal cortex, the direct effects of CORT on these oscillations remain unclear. We examined the acute impact of CORT on anterior cingulate cortex (ACC) oscillations in adult male mice, a hub region for stress and anxiety regulation.

View Article and Find Full Text PDF

The skin integrates diverse signals discerned by sensory neurons and immune cells to elicit adaptive responses to a range of stresses. Considering interactions between nervous and immune systems, we examined whether regulatory T (T) cells, which suppress systemic and local inflammation, can modulate activation of peripheral neurons. Acute T cell "loss of function" increased neuronal activation to noxious stimuli independently of their immunosuppressive function.

View Article and Find Full Text PDF

Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer mortality in females. Approximately 20-30% of patients with advanced breast cancer develop brain metastasis. Often, brain metastatic breast cancer (BMBC) exhibits a nonproliferative (dormant) phenotype and therapy resistance due to the unfavorable organ microenvironment.

View Article and Find Full Text PDF