98%
921
2 minutes
20
Plant-derived phytoglycogen nanoparticles (PhG NPs) have the advantages of size uniformity, dispersibility in water, excellent lubrication properties, and lack of cytotoxicity; however, their chemical functionalization may lead to loss of NP structural integrity. Here, we report a straightforward approach to the generation of PhG NP conjugates with biologically active molecules. Hydrogen bonding of bovine serum albumin with electroneutral PhG NPs endows them with additional ligand binding affinity and enables the electrostatically governed attachment of methotrexate (MTX), a therapeutic agent commonly used in the treatment of cancer and arthritis diseases, to the protein-capped NPs. We showed stimuli-responsive release of MTX from the PhG-based nanoconjugates under physiological cues such as temperature and ionic strength. The results of this study stimulate future exploration of biomedical applications of nanoconjugates of PhG NPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.1c01512 | DOI Listing |
Int J Biol Macromol
December 2024
School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China. Electronic address:
Anthropogenic wastewater generation and water pollution can have negative impacts on public health and ecosystems. However, most materials do not have both adsorptive and catalytic properties, so the design and development of sustainable and multifunctional materials is essential for wastewater treatment. Herein, composite hydrogel (PHG) containing [2-(Methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide (SBMA) and chitosan quaternary ammonium salts (HACC) were prepared for wastewater treatment.
View Article and Find Full Text PDFBiomacromolecules
May 2024
Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.
A suite of acyl chloride structural isomers (CHOCl) was used to effect gas-phase esterification of starch-based phytoglycogen nanoparticles (PhG NPs). The surface degree of substitution (DS) was quantified using X-ray photoelectron spectroscopy, while the overall DS was quantified using H NMR spectroscopy. Gas-phase modification initiates at the NP surface, with the extent of surface and overall esterification determined by both the reaction time and the steric footprint of the acyl chloride reagent.
View Article and Find Full Text PDFBiomacromolecules
May 2022
Department of Chemistry, University of Toronto, Toronto M5S 3H6, Ontario, Canada.
Plant-derived phytoglycogen nanoparticles (PhG NPs) have the advantages of size uniformity, dispersibility in water, excellent lubrication properties, and lack of cytotoxicity; however, their chemical functionalization may lead to loss of NP structural integrity. Here, we report a straightforward approach to the generation of PhG NP conjugates with biologically active molecules. Hydrogen bonding of bovine serum albumin with electroneutral PhG NPs endows them with additional ligand binding affinity and enables the electrostatically governed attachment of methotrexate (MTX), a therapeutic agent commonly used in the treatment of cancer and arthritis diseases, to the protein-capped NPs.
View Article and Find Full Text PDFACS Nano
May 2021
Department of Chemistry, University of Toronto, Toronto, Ontario, Canada, M5S 3H6.
Phytoglycogen nanoparticles (PhG NPs), a single-molecule highly branched polysaccharide, exhibit excellent water retention, due to the abundance of close-packed hydroxyl groups forming hydrogen bonds with water. Here we report lubrication properties of close-packed adsorbed monolayers of PhG NPs acting as boundary lubricants. Using direct surface force measurements, we show that the hydrated nature of the NP layer results in its striking lubrication performance, with two distinct confinement-controlled friction coefficients.
View Article and Find Full Text PDFInt J Nanomedicine
February 2021
Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada.
Purpose: Selenium is an essential trace element that supports animal health through the antioxidant defense system by protecting cells from oxidative-related damage. Using inorganic selenium species, such as sodium selenite (Na Sel), as a food supplement is cost-effective; however, its limitation as a nutritional supplement is its cytotoxicity. One strategy to mitigate this problem is by delivering inorganic selenium using a nanoparticle delivery system (SeNP).
View Article and Find Full Text PDF