Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Distinctive characteristics of articular cartilage such as avascularity and low chondrocyte conversion rate present numerous challenges for orthopedists. Tissue engineering is a novel approach that ameliorates the regeneration process by exploiting the potential of cells, biodegradable materials, and growth factors. However, problems exist with the use of tissue-engineered construct, the most important of which is scaffold-cartilage integration. Recently, many attempts have been made to address this challenge via manipulation of cellular, material, and biomolecular composition of engineered tissue. Hence, in this review, we highlight strategies that facilitate cartilage-scaffold integration. Recent advances in where efficient integration between a scaffold and native cartilage could be achieved are emphasized, in addition to the positive aspects and remaining problems that will drive future research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8807044PMC
http://dx.doi.org/10.1155/2022/7638245DOI Listing

Publication Analysis

Top Keywords

tissue engineering
8
insights cartilage
4
cartilage tissue
4
engineering improvement
4
improvement tissue-scaffold
4
integration
4
tissue-scaffold integration
4
integration enhance
4
enhance cartilage
4
cartilage regeneration
4

Similar Publications

Cellulosic Flexible Electronic Materials: Recent Advances in Structural Design, Functionalization, and Smart Applications.

Macromol Rapid Commun

September 2025

Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, P. R. China.

Rapid advancement of flexible electronics has generated a demand for sustainable materials. Cellulose, a renewable biopolymer, exhibits exceptional mechanical strength, customizable properties, biodegradability, and biocompatibility. These attributes are largely due to its hierarchical nanostructures and modifiable surface chemistry.

View Article and Find Full Text PDF

Vagus nerve stimulation (VNS) is a promising therapy for neurological and inflammatory disorders across multiple organ systems. However, conventional rigid interfaces fail to accommodate dynamic mechanical environments, leading to mechanical mismatches, tissue irritation, and unstable long-term interfaces. Although soft neural interfaces address these limitations, maintaining mechanical durability and stable electrical performance remains challenging.

View Article and Find Full Text PDF

Transformative Therapies for Wound Care: Insights into Tissue Engineering and Regenerative Medicine.

Adv Exp Med Biol

September 2025

Department of Stem Cells & Regenerative Medicine, Center for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India.

Wound healing is a dynamic and complex process that consists of four interconnected phases: hemostasis, inflammation, proliferation, and remodeling. This complex process is based on the coordinated actions of growth factors, cytokines, and other cellular interactions. However, conditions such as diabetes and chronic illnesses can disrupt this process and lead to nonhealing wounds or chronic ulcers.

View Article and Find Full Text PDF

Background: Electrical impedance myography (EIM) has been proposed as an efficient, non-invasive biomarker of muscle composition in facioscapulohumeral muscular dystrophy (FSHD).

Objective: We investigate whether EIM parameters are associated with muscle structure measured by magnetic resonance imaging (MRI), muscle histology, and transcriptomic analysis as well as strength at the individual leg muscle level.

Methods: We performed a multi-center cross-sectional study enrolling 33 patients with FSHD.

View Article and Find Full Text PDF

Aurora kinase A promotes trained immunity via regulation of endogenous S-adenosylmethionine metabolism.

Elife

September 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.

Innate immune cells can acquire a memory phenotype, termed trained immunity, but the mechanism underlying the regulation of trained immunity remains largely elusive. Here, we demonstrate that inhibition of Aurora kinase A (AurA) dampens trained immunity induced by β-glucan. ATAC-seq and RNA-seq analysis reveal that AurA inhibition restricts chromatin accessibility of genes associated with inflammatory pathways such as JAK-STAT, TNF, and NF-κB pathways.

View Article and Find Full Text PDF